Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 29: 100544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38327761

RESUMEN

Background and purpose: A dosimetry audit program based on alanine electron paramagnetic resonance (EPR) and radiochromic film dosimetry, may be a valuable tool for monitoring and improving the quality of lung stereotactic body radiotherapy (SBRT). The aim of this study was to report the initial, independent assessment of the dosimetric accuracy for lung SBRT practice using these dosimeters in combination with a novel phantom design. Materials and Methods: The audit service was a remote audit program performed on a commercial lung phantom preloaded with film and alanine detectors. An alanine pellet was placed in the centre of the target simulated using silicone in a 3D-printed mould. Large film detectors were placed coronally through the target and the lung/tissue interface and analysed using gamma analysis. The beam output was always checked on the same day with alanine dosimetry in water. We audited 29 plans from 14 centres up to now. Results: For the alanine results 28/29 plans were within 5 % with 19/29 plans being within 3 %. The passing rates were > 95 % for the film through the target for 27/29 plans and 17/29 plans for the film at the lung/tissue interface. For three plans the passing rate was < 90 % for the film on top of the lungs. Conclusions: The preliminary results were very satisfactory for both detectors. The high passing rates for the film in the interface region indicate good performance of the treatment planning systems. The phantom design was robust and performed well on several treatment systems.

2.
Phys Med Biol ; 69(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306975

RESUMEN

Objective. Water-equivalent dosimeters are desirable for dosimetry in radiotherapy. The present work investigates basic characteristics of novel aqueous detector materials and presents a signal loss approach for electron paramagnetic resonance (EPR) dosimetry.Approach. The proposed principle is based on the radiation dose dependent annihilation of EPR active nitroxides (NO·) in aqueous solutions. Stable nitroxide radicals (3-Maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (MmP), 3-Carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CmP)) in aqueous solutions containing dimethyl sulfoxide (DMSO) as an additive were filled in glass capillaries for irradiation and EPR readout. Radiation doses ranging from 1 to 64 Gy were applied with a clinical 6 MV flattening filter free photon beam. EPR readout was then performed with a X-band benchtop spectrometer. The dose response, temporal stability and reproducibility of the samples' EPR signal amplitudes as well as the influence of the nitroxide concentration between 10 and 160µM on the absolute signal loss were investigated using MmP. CmP was used to examine the dependence of the dose response on DMSO concentration between 0 and 10 vol%. An indirect effect model was fitted to the experimental data assuming irradiation induced radical reactions as the underlying mechanism.Main results. For an initial MmP concentration of 20µM, absolute EPR signal loss is linear up to a dose of 16 Gy with a yield G(-NO·) of approximately 0.4µmol J-1. Within five weeks upon sample irradiation to doses between 0 and 32 Gy relative EPR signal fluctuations were on average (126 readouts) below 1% (1σ). For c(MmP) ≥ 20µM, absolute signal loss is only weakly dependent on c(MmP), whereas it increases strongly with increasing c(DMSO) in the range 0-5 vol%. An indirect effect model is applicable to describe the reaction mechanism resulting in the observed dose response curve.Significance. Liquids consisting of nitroxides in aqueous solution and small amounts of DMSO (2 vol%) show promising basic characteristics for application as water-equivalent EPR dosimeter materials in radiotherapy. The EPR signal loss is based on an indirect effect mediated by diffusing radicals originating from the radiolysis of the water/DMSO mixture.


Asunto(s)
Dimetilsulfóxido , Óxidos de Nitrógeno , Radiometría , Espectroscopía de Resonancia por Spin del Electrón/métodos , Reproducibilidad de los Resultados , Radiometría/métodos , Agua
3.
J Appl Clin Med Phys ; 24(12): e14191, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922380

RESUMEN

PURPOSE: Modern radiotherapy techniques often deliver small radiation fields. In this work, a practical Electron Paramagnetic Resonance (EPR) dosimetry protocol is adapted and applied to measure output factors (OF) in small fields of a 6 MV radiotherapy system. Correction factors and uncertainties are presented and OFs are compared to the values obtained by following TRS-483 using an ionization chamber (IC). METHODS: Irradiations were performed at 10 cm depth inside a water phantom positioned at 90 cm source to surface distance with a 6 MV flattening filter free photon beam of a Halcyon radiotherapy system. OFs for different nominal field sizes (1 × 1, 2 × 2, 3 × 3, 4 × 4, normalized to 10 × 10 cm2 ) were determined with a PinPoint 3D (PTW 31022) IC following TRS-483 as well as with alanine pellets with a diameter of 4 mm and a height of 2.4 mm. EPR readout was performed with a benchtop X-band spectrometer. Correction factors due to volume averaging and due to positional uncertainties were derived from 2D film measurements. RESULTS: OFs obtained from both dosimeter types agreed within 0.7% after applying corrections for the volume averaging effect. For the used alanine pellets, volume averaging correction factors of 1.030(2) for the 1 × 1 cm2 field and <1.002 for the larger field sizes were determined. The correction factor for positional uncertainties of 1 mm was in the order of 1.018 for the 1 × 1 cm2 field. Combined relative standard uncertainties uc for the OFs resulting from alanine measurements were estimated to be below 1.5% for all field sizes. For IC measurements, uc was estimated to be below 1.0%. CONCLUSIONS: A practical EPR dosimetry protocol is adaptable for precisely measuring OFs in small fields down to 1 × 1 cm2 . It is recommended to consider the effect of positional uncertainties for field sizes <2 × 2 cm2 .


Asunto(s)
Alanina , Radiometría , Humanos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radiometría/métodos , Aceleradores de Partículas , Fantasmas de Imagen , Fotones
4.
Radiat Environ Biophys ; 62(1): 143-150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436118

RESUMEN

Otoliths are organs used by fish for hearing and keeping balance. They consist of biogenic crystals of hydroxyapatite and do not contain any living cells. Upon exposure to ionizing radiation, otolith hydroxyapatite accumulates radiation-induced stable CO2- radicals whose amount is proportional to absorbed dose. In electron paramagnetic resonance (EPR) dosimetry, carbonate ions are registered and, hence, the total accumulated dose in the fish otolith can be quantified. Therefore, otoliths can be used as individual fish dosimeters to support radiobiological and radioecological studies. An important aspect of otolith-based EPR dosimetry on fish from contaminated water bodies is the potential presence of bone-seeking 90Sr. Consequently, cumulative absorbed doses measured with EPR in otoliths may reflect the superposition of internal exposure to 90Sr/90Y and external exposure due to radionuclides circulating in soft tissue of the fish as well as due to environmental contamination. The objective of the present study was to develop a method that allows for an assessment of the contribution of 90Sr to the total dose in otolith. The method has been tested using otoliths from seven fish taken from reservoirs located in the Southern Urals contaminated with radionuclides including 90Sr. It has been shown that dose to otoliths is largely determined by 90Sr in the hydroxyapatite. The internal dose component can be calculated using activity concentration-to-dose conversion factors, which vary slightly in the range of 2.0-2.8 × 10-3 Gy year-1 per Bq g-1 depending on fish species and age. Internal doses to fish from water bodies with different levels of 90Sr contamination were calculated in the range from 2 mGy to ~ 200 Gy. External dose contribution was derived for two fish only to be about 100 and 40 Gy. It is concluded that EPR dosimetry on fish otoliths is a promising tool when external exposure prevails or is comparable to internal exposure due to 90Sr.


Asunto(s)
Membrana Otolítica , Dosímetros de Radiación , Animales , Radioisótopos de Estroncio/análisis , Hidroxiapatitas/análisis , Agua
5.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144728

RESUMEN

By the early 1980s, unique devices appeared in the USSR: a series of benchtop specialized EPR spectrometers. This equipment was quickly accepted not only in science but also in medicine and in many technical and economic areas including chemical industries and geologic exploration. The appearance of these devices was perceived as a salvation for the Soviet magnetic resonance (MR) scientific instrumentation by those who worked in the field of EPR spectroscopy in the USSR. (However, the program of MR scientific instrumentation ceased to exist along with the USSR a few years later). The Belarusian State University in Minsk was the center of these developments. At that moment and for many years afterwards, these devices were unique with no analogues in the worldwide EPR industry. They remained the only mass-produced MR spectrometers on the territory of the former USSR after its collapse. For the first time, based on archival materials, patents, and our personal memoirs, we describe the development of these EPR spectrometers and discuss the most original technical solutions and the scientific tasks solved with this equipment We also remember the participants of the work, showing the historical context of these events.


Asunto(s)
Tecnología , Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia Magnética
6.
Appl Radiat Isot ; 178: 109958, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34598040

RESUMEN

The TE101 mode rectangle EPR cavity was newly developed to achieve X-band in vivo EPR tooth dosimetry for the rescue of nuclear emergency. An aperture for sample detection was opened on the cavity's surface. Its characteristics were evaluated by measuring DPPH and intact human incisor samples. Remarkable radiation induced signal from EPR spectrum of 1Gy-8Gy irradiated teeth was observed. In vivo measurements of rat was performed to verify its application for in vivo tooth dosimetry.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Radiometría/métodos , Diente/diagnóstico por imagen , Animales , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Diseño de Equipo , Femenino , Humanos , Radiometría/instrumentación , Ratas , Ratas Sprague-Dawley
7.
Radiat Oncol ; 16(1): 209, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717680

RESUMEN

BACKGROUND: In-vivo dosimetry (IVD) is a patient specific measure of quality control and safety during radiotherapy. With regard to current reporting thresholds for significant occurrences in radiotherapy defined by German regulatory authorities, the present study examines the clinical feasibility of superficial electron paramagnetic resonance (EPR) IVD of cumulative total doses applied to breast cancer patients treated with helical intensity-modulated radiotherapy (tomotherapy). METHODS: In total, 10 female patients with left- or right-sided breast cancer were enrolled in this prospective IVD study. Each patient received a hypofractionated whole breast irradiation. A total median dose of 42.4 Gy in 16 fractions (5 fractions per week) was prescribed to the planning target volume. The treatments were completely delivered using helical tomotherapy and daily image guidance via megavoltage CT (MVCT). For each patient, three EPR dosimeters were prepared and placed at distinct locations on the patient's skin during the delivery of all fractions. Two dosimeters were placed next to the ipsilateral and contralateral mammilla and one dosimeter was placed ventrally to the thyroid (out-of-primary-beam). The total doses delivered to the dosimeters were readout after all fractions had been administered. The measured total dose values were compared to the planned dose values derived from the treatment planning system (TPS). Daily positional variations (displacement vectors) of the ipsilateral mammilla and of the respective dosimeter were analyzed with respect to the planned positions using the daily registered MVCT image. RESULTS: Averaged over all patients, the mean absolute dose differences between measured and planned total dose values (± standard deviation (SD)) were: 0.49 ± 0.85 Gy for the ipsilateral dosimeter, 0.17 ± 0.49 Gy for the contralateral dosimeter and -0.12 ± 0.30 Gy for the thyroid dosimeter. The mean lengths of the ipsilateral displacement vectors (± SD) averaged over all patients and fractions were: 10 ± 7 mm for the dosimeter and 8 ± 4 mm for the mammilla. CONCLUSION: Superficial EPR IVD is suitable as additional safeguard for dose delivery during helical tomotherapy of breast cancer. Despite positional uncertainties in clinical routine, the observed dose deviations at the ipsilateral breast were on average small compared to national reporting thresholds for total dose deviations (i.e. 10%/4 Gy). EPR IVD may allow for the detection of critical dose errors during whole breast irradiations.


Asunto(s)
Neoplasias de la Mama/radioterapia , Espectroscopía de Resonancia por Spin del Electrón/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Estudios de Factibilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Pronóstico , Estudios Prospectivos , Radiometría/métodos , Dosificación Radioterapéutica
8.
Z Med Phys ; 31(4): 365-377, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34210537

RESUMEN

PURPOSE: The present study investigates superficial in vivo dosimetry (IVD) by means of a previously proposed electron paramagnetic resonance (EPR) dosimetry system aiming at measuring and verifying total doses delivered by complex radiotherapy treatments. In view of novel regulatory requirements in Germany, differences between measured and planned total doses to the EPR dosimeters are analyzed and compared to reporting thresholds for significant occurrences. METHODS: EPR dosimeters, each consisting of one lithium formate monohydrate (LFM) and one polycrystalline l-alanine (ALA) pellet, were attached to the surface of an anthropomorphic head phantom. Three head and neck treatments with total target doses ranging from 30 to 64Gy were fully delivered to the phantom by helical tomotherapy. During each treatment, eight EPR dosimeters were placed at distinct spots: (i) within or next to the planning target volume (PTV), (ii) near to organs at risk including the parotids and the lenses, (iii) at the thyroid lying out-of-field. EPR read out was always performed after all fractions were delivered. EPR results were compared to thermoluminescence dosimeter (TLD) measurements and to the planned total doses derived from the treatment planning system (TPS). Planned total doses to the EPR dosimeters ranged from about 2 to 64Gy. RESULTS: By taking uncertainties into account, the measured and planned doses were in good agreement. Exceptions occurred mainly at the thyroid (out-of-field) and lenses (extreme sparing). The maximum total dose difference between EPR results and corresponding planned doses was 1.3Gy occurring at the lenses. Remarkably, each LFM and ALA pellet placed within or next to the PTV provided dose values that were within ±4% of the planned dose. Dose deviations from planned dose values were comparable for EPR and TLD measurements. CONCLUSION: The results of this proof of principle study suggests that superficial EPR-IVD is applicable in a wide dose range and in various irradiation conditions - being a valuable tool for monitoring cumulative total doses delivered by complex IMRT treatments. EPR-IVD in combination with helical tomotherapy is suitable to reliably detect local dose deviations at superficial dosimeter spots in the order of current national reporting thresholds for significant occurrences (i.e. 10%/4Gy).


Asunto(s)
Radioterapia de Intensidad Modulada , Espectroscopía de Resonancia por Spin del Electrón , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
9.
Radiat Environ Biophys ; 59(3): 357-387, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32372284

RESUMEN

This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.


Asunto(s)
Radiación Ionizante , Radiometría/métodos , Animales , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Radioisótopos/farmacocinética
10.
Radiat Environ Biophys ; 57(4): 357-363, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30324495

RESUMEN

Otoliths are the organs which fish use for hearing and keeping balance. Otoliths are the most calcified tissues in the fish body. In contrast to bones, otoliths are not affected by remodeling and, therefore, they are expected to accumulate any dose from ionizing radiation during lifetime. Therefore, EPR dosimetry with fish otoliths could be an important tool for dose reconstruction in radiobiology and radioecology. It could also provide useful information remediation actions to de-contaminate waterbodies. Consequently, in the present study, otoliths of three contaminated fish species (roach (Rutilus rutilus), pike (Esox lucius) and perch (Perca Fluviatilis)) were examined with Electron Paramagnetic Resonance (EPR) spectroscopy. The fish were caught at storage reservoirs of liquid radioactive waste from Mayak PA and from the upper reach of the Techa River, which have been contaminated with different levels of radionuclide activity concentrations. It is shown that the radiation-induced EPR signal of otolith is stable and characterized by a linear dose response. However, the slope of the calibration curve (corresponding to the radiation sensitivity of the material) is not the same for different species; this may be caused by differences in mineralization. The reconstructed doses were found to be in the range from undetectable (in fish from the upper stream of the Techa River) up to 265 Gy (in roach from the most contaminated waterbody). In parallel, otoliths were measured with ß-counter to detect 90Sr/90Y. Samples were also tested on the presence of alpha-emitters, but no alpha activity above background could be detected. However, a significant activity concentration of 90Sr was detected (from 1 × 101 to 2 × 104 Bq/g). The EPR doses measured correlated with the 90Sr activity concentration measured in the otolith samples.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Membrana Otolítica/efectos de la radiación , Radiometría/métodos
11.
Radiat Environ Biophys ; 57(1): 63-68, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29027002

RESUMEN

Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.


Asunto(s)
Camelus , Esmalte Dental/efectos de la radiación , Rayos gamma/efectos adversos , Diente Molar/efectos de la radiación , Animales , Espectroscopía de Resonancia por Spin del Electrón
12.
Appl Radiat Isot ; 121: 82-86, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28039756

RESUMEN

Novel polymeric composites for radiation dosimetry were developed. The composites were prepared by solvent-free melt compounding of ethylene vinyl acetate (EVA) (40% vinyl) and magnesium sulfate (MgSO4). Mechanical properties, melt flow characteristics and dosimetric properties were investigated. The composites with up to 50% (wt) of MgSO4 were flexible and capable of flow. The dose response of the EPR signal of the composites was studied in the dose range 3Gy-4kGy and found to be linear between 18Gy and 4kGy. The reproducibility of dose measurements was good. The signal fading rate and the energy dependence of the dose response were found to be acceptable.

13.
Radiat Environ Biophys ; 55(4): 477-499, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27600653

RESUMEN

This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (89Sr, 90Sr/90Y), internal exposure due to 137Cs/137mBa incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to 89Sr and 90Sr/90Y were within the range of 10-110 mGy; cumulative internal doses due to 137Cs/137mBa depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.


Asunto(s)
Esmalte Dental/efectos de la radiación , Dosis de Radiación , Ríos , Adulto , Anciano , Anciano de 80 o más Años , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Masculino , Persona de Mediana Edad , Residuos Radiactivos , Radiometría , Federación de Rusia
14.
Radiat Meas ; 82: 1-7, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26347593

RESUMEN

Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion.

15.
Appl Radiat Isot ; 99: 1-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25698642

RESUMEN

Performance characteristics of the megavoltage photon dose measurements with EPR and table sugar were analyzed. An advantage of sugar as a dosimetric material is its tissue equivalency. The minimal detectable dose was found to be 1.5Gy for both the 6 and 18MV photons. The dose response curves are linear up to at least 20Gy. The energy dependence of the dose response in the megavoltage energy range is very weak and probably statistically insignificant. Reproducibility of measurements of various doses in this range performed with the peak-to-peak and double-integral methods is reported. The method can be used in real-time dosimetry in radiation therapy.


Asunto(s)
Materiales Biomiméticos/química , Sacarosa en la Dieta/análisis , Sacarosa en la Dieta/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radiometría/métodos , Radioterapia/métodos , Materiales Biomiméticos/efectos de la radiación , Humanos , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Appl Radiat Isot ; 83 Pt A: 41-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24246553

RESUMEN

Electron paramagnetic resonance (EPR) signals induced by γ-radiation in different polymorphic forms of trehalose were studied with dosimetry applications in view. Dose response of trehalose in terms of the concentration of induced paramagnetic centers was studied in the dose range from 0.5 to 50 kGy. The dependences of the dose responses of anhydrous ß-crystalline trehalose (TRE(ß)) and glassy trehalose (TRE(g)) on dose are linear up to 15 kGy, whereas the linearity of the dependence for trehalose dihydrate (TRE(h)) is limited to about 10 kGy. At doses above 15 kGy, the dependences get saturated for all three forms. The relative radiation sensitivities pointed to the following order of decreasing concentrations of radiation-induced paramagnetic centers in the forms: TRE(g)>TRE(ß)>TRE(h). The results showed that at all three trehalose polymorphic forms are suitable for dosimetry, especially for retrospective dose measurements. Also, thermal stability and decay kinetics of the EPR signals of the different forms of trehalose were studied in isothermal annealing experiments. The kinetic parameters, which had been derived by fitting the Arrhenius function to the measured decay rate constants, indicated that the fading of the EPR signals varied from one polymorphic form of trehalose to another. This emphasizes the impact of the molecular packing in the vicinity of the radiation-induced paramagnetic centers on their stability.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Trehalosa/química , Trehalosa/efectos de la radiación , Cristalización , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA