Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Cell Stem Cell ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38996472

RESUMEN

Recent advances have made modeling human small intestines in vitro possible, but it remains a challenge to recapitulate fully their structural and functional characteristics. We suspected interstitial flow within the intestine, powered by circulating blood plasma during embryonic organogenesis, to be a vital factor. We aimed to construct an in vivo-like multilayered small intestinal tissue by incorporating interstitial flow into the system and, in turn, developed the micro-small intestine system by differentiating definitive endoderm and mesoderm cells from human pluripotent stem cells simultaneously on a microfluidic device capable of replicating interstitial flow. This approach enhanced cell maturation and led to the development of a three-dimensional small intestine-like tissue with villi-like epithelium and an aligned mesenchymal layer. Our micro-small intestine system not only overcomes the limitations of conventional intestine models but also offers a unique opportunity to gain insights into the detailed mechanisms underlying intestinal tissue development.

3.
Bioessays ; : e2400061, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884196

RESUMEN

The relationship of embryonal carcinoma (EC) cells, the stem cells of germ cell- or embryo-derived teratocarcinoma tumors, to early embryonic cells came under intense scrutiny in the early 1970s when mouse chimeras were produced between EC cells and embryos. These chimeras raised tantalizing possibilities and high hopes for different areas of research. The normalization of EC cells by the embryo lent validity to their use as in vitro models for embryogenesis and indicated that they might reveal information about the relationship between malignancy and differentiation. Chimeras also showed the way for the potential introduction of genes, selected in EC cells in vitro, into the germ line of mice. Although EC cells provided material for the elucidation of early embryonic events and stimulated many studies of early molecular differentiation, after years of intense scrutiny, they fell short as the means of genetic manipulation of the germ line, although arguably they pointed the way to the development of embryonic stem (ES) cells that eventually fulfilled this goal.

4.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884724

RESUMEN

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Asunto(s)
Cardiopatías Congénitas , Animales , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Modelos Animales de Enfermedad , Ratones , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Cultivo de Célula/métodos
5.
Med Mol Morphol ; 57(3): 155-160, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38935299

RESUMEN

The thymus is where T cells, among the most important immune cells involved in biological defense and homeostasis, are produced and developed. The thymus plays an important role in the defense against infection and cancer as well as the prevention of autoimmune diseases. However, the thymus gland atrophies with age, which might have pathological functions, and in some circumstances, there is a congenital defect in the thymus. These can be the cause of many diseases related to the dysregulation of T cell functions. Thus, the enhancement and/or normalization of thymic function may lead to protection against and treatment of a wide variety of diseases. Therefore, thymus transplantation is considered a strong candidate for permanent treatment. The status and issues related to thymus transplantation for possible immunotherapy are discussed although it is still at an early stage of development.


Asunto(s)
Inmunoterapia , Linfocitos T , Timo , Timo/inmunología , Timo/trasplante , Humanos , Linfocitos T/inmunología , Inmunoterapia/métodos , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia
6.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643244

RESUMEN

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Asunto(s)
Cromatina , Cristalinas , Animales , Ratones , Humanos , Células Madre Embrionarias de Ratones/metabolismo , Cromosomas/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Epitelio/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Factor de Unión a CCCTC/metabolismo
7.
Exp Anim ; 73(3): 310-318, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38447983

RESUMEN

Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus musculus, PWK; M. musculus castaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.


Asunto(s)
Desequilibrio Alélico , Animales , Ratones , Desequilibrio Alélico/genética , Ratones Endogámicos C57BL , Alelos , Expresión Génica/genética , Línea Celular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Polimorfismo Genético , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Híbridas , Células Madre Embrionarias , Femenino , Especificidad de la Especie , Masculino
8.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38490199

RESUMEN

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Asunto(s)
Células Madre Embrionarias de Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Ratones , Animales , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos
9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542258

RESUMEN

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Asunto(s)
Roturas del ADN de Doble Cadena , Células Madre Embrionarias de Ratones , Animales , Ratones , Reparación del ADN , Reparación del ADN por Unión de Extremidades , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
10.
J Biol Eng ; 18(1): 9, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229076

RESUMEN

BACKGROUND: Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS: We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION: SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.

11.
Stem Cells Dev ; 33(3-4): 67-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032751

RESUMEN

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.


Asunto(s)
Histamina , Piperidinas , Receptores Histamínicos H3 , Ratones , Animales , Histamina/farmacología , Células Madre Embrionarias de Ratones/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Agonistas de los Receptores Histamínicos/uso terapéutico , Receptores Histamínicos H3/metabolismo
12.
DNA Res ; 31(1)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153767

RESUMEN

The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.


Asunto(s)
Genoma Humano , Factores de Transcripción , Humanos , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Dedos de Zinc , Repeticiones de Microsatélite , Proteínas de Unión al ADN/genética
13.
Cell Rep Methods ; 3(11): 100628, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37922907

RESUMEN

Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.


Asunto(s)
Genes BRCA2 , Neoplasias Ováricas , Humanos , Femenino , Masculino , Animales , Ratones , Células Madre Embrionarias de Ratones , Neoplasias Ováricas/genética , Proteína BRCA2/genética
14.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034770

RESUMEN

Two distinct fates, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common progenitor cells, the inner cell mass (ICM), in mammalian embryos. To study how these sister identities are forged, we leveraged embryonic (ES) and eXtraembryonic ENdoderm (XEN) stem cells - in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses uncovered distinct rates, efficiencies and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4, KLF4 and SOX2-induced XEN-to-iPS reprogramming progressed with diminished efficiency and kinetics. The dominant PrE transcriptional program, safeguarded by Gata4, and globally elevated chromatin accessibility of EPI underscored the differential plasticities of the two states. Mapping in vitro trajectories to embryos revealed reprogramming in either direction tracked along, and toggled between, EPI and PrE in vivo states without transitioning through the ICM.

15.
Methods Mol Biol ; 2631: 53-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995664

RESUMEN

Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.


Asunto(s)
Edición Génica , Ingeniería Genética , Ratones , Animales , Humanos , Edición Génica/métodos , Células Madre Embrionarias , Transgenes , Control de Calidad , Sistemas CRISPR-Cas , Mamíferos/genética
16.
Methods Mol Biol ; 2631: 341-353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995676

RESUMEN

Rat germline-competent embryonic stem (ES) cell lines have been available since 2008, and rat models with targeted mutations have been successfully generated using ES cell-based genome targeting technology. This chapter will focus on the procedures of gene targeting in rat ES cells.


Asunto(s)
Células Madre Embrionarias , Marcación de Gen , Ratas , Animales , Línea Celular , Células Germinativas , Genoma
17.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835318

RESUMEN

Human and mouse induced pluripotent stem cells (PSCs) are widely used for studying early embryonic development and for modeling of human diseases. Derivation and studying of PSCs from model organisms beyond commonly used mice and rats may provide new insights into the modeling and treating human diseases. The order Carnivora representatives possess unique features and are already used for modeling human-related traits. This review focuses on the technical aspects of derivation of the Carnivora species PSCs as well as their characterization. Current data on dog, feline, ferret, and American mink PSCs are summarized.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Animales , Gatos , Ratones , Ratas , Perros , Hurones , Visón , Diferenciación Celular
18.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754048

RESUMEN

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genética
19.
Cell Struct Funct ; 48(1): 49-57, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36575041

RESUMEN

In embryonic stem (ES) cell colonies, a small subpopulation that changes cell shape and loses pluripotency often appears in two-dimensional (2D) cultures, even in the presence of a stemness factor. We have previously shown that membrane translocation of the syntaxin4, t-SNARE protein contributes to this phenomenon. Here, we show that ES cells in three-dimensional (3D) aggregates do not succumb to extruded syntaxin4 owing to suppressed expression of P-cadherin protein. While extracellular expression of syntaxin4 led to the striking upregulation of P-cadherin mRNA in both 2D and 3D-ES cells, morphological changes and appreciable expression of P-cadherin protein were detected only in 2D-ES cells. Importantly, the introduction of an expression cassette for P-cadherin practically reproduced the effects induced by extracellular syntaxin4, where the transgene product was clearly detected in 2D-, but not 3D-ES cells. An expression construct for P-cadherin-Venus harboring an in-frame insertion of the P2A sequence at the joint region gave fluorescent signals only in the cytoplasm of 2D-ES cells, demonstrating translational regulation of P-cadherin. These results provide the mechanistic insight into the uncontrollable differentiation in 2D-ES cells and shed light on the validity of the "embryoid body protocol commonly used for ES cell handling" for directional differentiation.Key words: differentiation, embryoid body, ES cells, P-cadherin, syntaxin4.


Asunto(s)
Cadherinas , Células Madre Embrionarias , Cadherinas/genética , Cadherinas/metabolismo , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Comunicación Celular , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología
20.
Methods Mol Biol ; 2609: 375-385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36515848

RESUMEN

According to the most recent data, cancer is among the leading cause of death in the United States and accounted for more than 600,000 deaths in 2021. Around 30% of these cancer-related deaths were caused by breast, prostate, and ovarian cancers. PARP-1 inhibitors show the most promising results in treatment of these three types of cancers and have found widespread use in the development of novel treatment strategies. A number of PARP inhibitors currently are undergoing phase I/II of FDA approval process for treatment of genetically disposed mutant tumors. Recently, however, a few clinical studies reported setbacks in research on PARP-1 inhibitors. It is likely that these setbacks are caused by tremendous off-target effects. To overcome these problems, it is very important to design new potent PARP-1 inhibitors, which do not kill normal cells. Our newly developed assay is based on the usage of sensitized embryonic stem cells with disrupted PARG gene that significantly increase the base level of pADPr for easy detection. Our approach allows the discovery of that effectively target poly(ADP-ribosyl)ation in cells and allows to select compounds with minimal or no cytotoxic effects on ES cells.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Madre Embrionarias de Ratones , Glicósido Hidrolasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA