Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.668
Filtrar
1.
Chemosphere ; : 142829, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992444

RESUMEN

Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum ß-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulfate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.

2.
J Travel Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952011

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a global health crisis, with Enterobacterales including Escherichia coli and Klebsiella pneumoniae playing significant roles. While international travel to low- and middle-income countries is linked to colonisation with AMR Enterobacterales, the clinical implications, particularly the risk of subsequent infection, remain unclear due to limited data. We aimed to characterise E. coli and K. pneumoniae infections in travellers and the antimicrobial susceptibility profiles of their isolates. METHODS: We analysed data on E. coli and K. pneumoniae infections in travellers collected at GeoSentinel sites between 2015 and 2022, focusing on epidemiological, clinical and microbiological characteristics. We defined multi-drug resistance (MDR) as non-susceptibility to agents from at least three drug classes. RESULTS: Over the 8-year period, we included 655 patients (median age 41 years; 74% female) from 57 sites in 27 countries, with 584 E. coli and 72 K. pneumoniae infections. Common travel regions included Sub-Saharan Africa, Southeast Asia, and South-Central Asia. Urinary tract infections predominated. Almost half (45%) were hospitalised. Among infections with antimicrobial susceptibility data across three or more drug classes, 203/544 (37%) E. coli and 19/67 (28%) K. pneumoniae demonstrated MDR. Over one-third of E. coli and K. pneumoniae isolates were non-susceptible to third-generation cephalosporins and cotrimoxazole, with 38% and 28% non-susceptible to fluoroquinolones, respectively. Travellers to South-Central Asia most frequently had isolates non-susceptible to third-generation cephalosporins, fluoroquinolones and carbapenems. We observed increasing frequencies of phenotypic extended spectrum beta-lactamase and carbapenem resistance over time. CONCLUSIONS: E. coli and K. pneumoniae infections in travellers, particularly those to Asia, may be challenging to empirically treat. Our analysis highlights the significant health risks these infections pose to travellers and emphasises the escalating global threat of AMR. Enhanced, systematic AMR surveillance in travellers is needed, along with prospective data on infection risk post travel-related AMR organism acquisition.

3.
Antimicrob Resist Infect Control ; 13(1): 72, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971782

RESUMEN

BACKGROUND: Before the COVID-19 pandemic there has been a constant increase in antimicrobial resistance (AMR) of Escherichia coli, the most common cause of urinary tract infections and bloodstream infections. The aim of this study was to investigate the impact of the COVID-19 pandemic on extended-spectrum ß-lactamase (ESBL) production in urine and blood E. coli isolates in Finland to improve our understanding on the source attribution of this major multidrug-resistant pathogen. METHODS: Susceptibility test results of 564,233 urine (88.3% from females) and 23,860 blood E. coli isolates (58.8% from females) were obtained from the nationwide surveillance database of Finnish clinical microbiology laboratories. Susceptibility testing was performed according to EUCAST guidelines. We compared ESBL-producing E. coli proportions and incidence before (2018-2019), during (2020-2021), and after (2022) the pandemic and stratified these by age groups and sex. RESULTS: The annual number of urine E. coli isolates tested for antimicrobial susceptibility decreased 23.3% during 2018-2022 whereas the number of blood E. coli isolates increased 1.1%. The annual proportion of ESBL-producing E. coli in urine E. coli isolates decreased 28.7% among males, from 6.9% (average during 2018-2019) to 4.9% in 2022, and 28.7% among females, from 3.0 to 2.1%. In blood E. coli isolates, the proportion decreased 32.9% among males, from 9.3 to 6.2%, and 26.6% among females, from 6.2 to 4.6%. A significant decreasing trend was also observed in most age groups, but risk remained highest among persons aged ≥ 60 years. CONCLUSIONS: The reduction in the proportions of ESBL-producing E. coli was comprehensive, covering both specimen types, both sexes, and all age groups, showing that the continuously increasing trends could be reversed. Decrease in international travel and antimicrobial use were likely behind this reduction, suggesting that informing travellers about the risk of multidrug-resistant bacteria, hygiene measures, and appropriate antimicrobial use is crucial in prevention. Evaluation of infection control measures in healthcare settings could be beneficial, especially in long-term care.


Asunto(s)
COVID-19 , Infecciones por Escherichia coli , Escherichia coli , Infecciones Urinarias , beta-Lactamasas , Humanos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Finlandia/epidemiología , COVID-19/epidemiología , Femenino , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Masculino , Infecciones Urinarias/microbiología , Infecciones Urinarias/epidemiología , Persona de Mediana Edad , beta-Lactamasas/metabolismo , beta-Lactamasas/biosíntesis , Anciano , Adulto , Adolescente , Adulto Joven , Niño , Lactante , Preescolar , Anciano de 80 o más Años , Pruebas de Sensibilidad Microbiana , SARS-CoV-2 , Recién Nacido , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/epidemiología , Bacteriemia/microbiología , Farmacorresistencia Bacteriana Múltiple , Pandemias
4.
Br Poult Sci ; : 1-11, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967914

RESUMEN

1. Shiga toxin-producing Escherichia coli (STEC) strains are associated with disease outbreaks which cause a public health problem. The aim of this study was to determine the frequency of STEC strains, their virulence factors, phylogenetic groups and antimicrobial resistance profiles in broiler chickens.2. A total of 222 E.coli isolates were collected from the caecum of chickens intended to be slaughtered. Antibiotic susceptibility was tested against 21 antimicrobial agents and ESBL phenotype was assessed by double-disk synergy test. The presence of STEC virulence genes stx1, stx2,eaeA and ehxA was detected by PCR. The identification of STEC serogroups was realised by PCR amplification. Additive virulence genes, phylogenetic groups and integrons were examined among the STEC isolates.3. Out of 222 E.coli isolates, 72 (32%) were identified as STEC strains and the most predominant serogroups were O103, O145 and O157. Shiga toxin gene 1 (stx1) was found in 84.7% (61/72) of the STEC strains, and eae and stx2 were detected in 38.8% and 13.8%, respectively. The ESBL phenotype was documented in 48.6% (35/72) of isolates. Most of the isolates (90.3%) carried class 1 integron with the gene cassette encoding resistance to trimethoprim (dfrA) and streptomycin (aadA) in 31.9% of the isolates. Class 2 integron was identified in 36.1% of isolates.4. Broilers can be considered as a reservoir of STEC strains which have high virulence factors and integrons that might be transmitted to other chickens, environments and humans. It is important to undertake surveillance and efficient control measures in slaughterhouses and farms to control measures of STEC bacteria.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38958811

RESUMEN

Leminorella grimontii strain LG-KP-E1-2-T0 was isolated from Zophobas morio larvae. It showed a susceptibility phenotype compatible with the expression of an inducible extended-spectrum ß-lactamase. The presence of a chromosomal bla gene encoding for the class A GRI-1 ß-lactamase was revealed by whole-genome sequencing. GRI-1 shared the highest amino acid identity with RIC-1 and OXY-type ß-lactamases (76-80%). Analysis of six further publicly-available L. grimontii draft genomes deposited in NCBI revealed that blaGRI-1 was always present. Core-genome analysis indicated that LG-KP-E1-2-T0 was unique from other strains. We provided the first complete genome of L. grimontii and new insights on its chromosomal ß-lactamases.

6.
JMIR Form Res ; 8: e54044, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986131

RESUMEN

BACKGROUND: Machine learning has advanced medical event prediction, mostly using private data. The public MIMIC-3 (Medical Information Mart for Intensive Care III) data set, which contains detailed data on over 40,000 intensive care unit patients, stands out as it can help develop better models including structured and textual data. OBJECTIVE: This study aimed to build and test a machine learning model using the MIMIC-3 data set to determine the effectiveness of information extracted from electronic medical record text using a named entity recognition, specifically QuickUMLS, for predicting important medical events. Using the prediction of extended-spectrum ß-lactamase (ESBL)-producing bacterial infections as an example, this study shows how open data sources and simple technology can be useful for making clinically meaningful predictions. METHODS: The MIMIC-3 data set, including demographics, vital signs, laboratory results, and textual data, such as discharge summaries, was used. This study specifically targeted patients diagnosed with Klebsiella pneumoniae or Escherichia coli infection. Predictions were based on ESBL-producing bacterial standards and the minimum inhibitory concentration criteria. Both the structured data and extracted patient histories were used as predictors. In total, 2 models, an L1-regularized logistic regression model and a LightGBM model, were evaluated using the receiver operating characteristic area under the curve (ROC-AUC) and the precision-recall curve area under the curve (PR-AUC). RESULTS: Of 46,520 MIMIC-3 patients, 4046 were identified with bacterial cultures, indicating the presence of K pneumoniae or E coli. After excluding patients who lacked discharge summary text, 3614 patients remained. The L1-penalized model, with variables from only the structured data, displayed a ROC-AUC of 0.646 and a PR-AUC of 0.307. The LightGBM model, combining structured and textual data, achieved a ROC-AUC of 0.707 and a PR-AUC of 0.369. Key contributors to the LightGBM model included patient age, duration since hospital admission, and specific medical history such as diabetes. The structured data-based model showed improved performance compared to the reference models. Performance was further improved when textual medical history was included. Compared to other models predicting drug-resistant bacteria, the results of this study ranked in the middle. Some misidentifications, potentially due to the limitations of QuickUMLS, may have affected the accuracy of the model. CONCLUSIONS: This study successfully developed a predictive model for ESBL-producing bacterial infections using the MIMIC-3 data set, yielding results consistent with existing literature. This model stands out for its transparency and reliance on open data and open-named entity recognition technology. The performance of the model was enhanced using textual information. With advancements in natural language processing tools such as BERT and GPT, the extraction of medical data from text holds substantial potential for future model optimization.

7.
Microb Pathog ; 193: 106769, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955237

RESUMEN

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.

8.
Antimicrob Agents Chemother ; : e0172123, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990013

RESUMEN

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.

9.
Braz J Microbiol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874745

RESUMEN

The objective of the study was to evaluate the frequency and genetic characteristics of ESBL-producing Escherichia coli and Klebsiella spp. and the risk factors associated with a high total bacterial count in bulk tank milk samples of dairy farms in three municipalities of the Antioquia Department, Colombia. Fifteen samples were positive for E. coli and Klebsiella spp. Subsequent analysis of the 16 S rRNA gene sequences confirmed these isolates included E. coli (n = 3), K. oxytoca (n = 11), and K. pneumoniae (n = 1). None of the isolates was positive for ESBL identification by phenotypic methods, but the only the isolate of K. pneumoniae was positive for the blaSHV61 gene by sequence analysis. The antibiotic susceptibility evaluation for all Klebsiella spp. isolates identified resistance to fosfomycin (50%; 6/12) and ampicillin (100%; 12/12). While most of the herds maintain adequate hygienic quality, specific risk factors such as having more than 60 milking cows, frequent changes in milkers, milking in paddocks, and using a chlorinated product for pre-dipping have been identified as associated with a high total bacterial count > 100,000 CFU/mL in bulk tank milk. However, certain variables including the milker being the owner of the animals and the proper washing and disinfection of the milking machine contribute to maintain a high level of hygiene and quality in the raw milk stored in the tanks. In conclusion, the frequency of ESBL producers was relatively low, with only K. pneumoniae testing positive for the blaSHV ESBL type. The presence of these bacteria in milk tanks represents a potential risk to public health for consumers of raw milk and its derivatives.

10.
BMC Vet Res ; 20(1): 259, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877453

RESUMEN

The health of calves has a significant impact on the production of cows and livestock. Some desert plants have pharmacological importance, as they can be used to reduce antibiotic resistance. Our hypothesis is designed to detect Virulent- Multidrug-Resistant and Extended- spectrum Beta- lactamase Enterobacteriaceae (Virulent-MDR-ESBL Enterobacteriaceae and to determine whether Moringa oleifera has antibacterial activity against the detected isolates. A total of 39 Enterobacteriaceae isolates from 28 diarrheic samples were collected from calves aged between 20 days and 20 months from 3 different flocks in North Sinai, Sahl-Eltina region, Egypt. E.coli 46% (18/39), O157 13% (5/39), Klebsiella pneumoniae 41% (16/39). MDR members accounted for 87%, while ESBL isolates accounted for 43%. The antibacterial activity is represented by microdilution. Minimum inhibition concentration (MIC) for the methanol extract of Moringa oleifera ranged from 2.5,5,10, and 25mg/ ml among E.coli isolates, and O157 was susceptible to (2.5mg/ ml), Klebsiella pneumoniae isolates were susceptible to (5-50mg/ ml). Analysis of the methanol extract revealed that ferulic acid was the dominant phenolic compound with a concentration of 29,832 parts per million (ppm). In silico docking study expected the active site of ferulic acid to act on the tyrosine bacterial enzyme through Pi-alkyl, Pi-anion, Carbon hydrogen bonds, and extra ionic attractive interactions with copper ions which can stabilize ferulic acid inside the targeted pocket Diverse virulent gene profiles were observed in E. coli. The Shiga toxin-producing Escherichia coli (STEC) was reported in 83% of the isolated E. coli, while the DNA gyrase (gyrA) was harbored in 100% of Klebsiella pneumoniae isolates. Various profiles of antibiotic resistance genes for both E. coli and Klebsiella pneumoniae isolates were distinguished. blaTEM genes were detected in 99% of E. coli and 100% of Klebsiella pneumoniae. Sequence analysis for E. coli strain DRC-North Sinai-Eg was placed in accession numbers (OP955786) for the Shiga toxin 2 gene (Stx2A), (OP997748) and (OP997749) for the Adhesion to host cell gene (Eae). For the hemolysine gene (hylA), the accession number was (OP946183). Klebsiella pneumoniae strain DRC-North Sinai-Eg was placed in (OP946180) for (gyrA). This study has proven the broad range of Moringa oliefera's antibacterial effects in vitro against the virulent-MDR- ESBL E. coli and Klebsiella pneumoniae isolated from North Sinai calves diarrhea. These are congruent with the disability effect on bacterial tyrosinase enzyme through docking study therefore, we recommend the usage of this desert plant as a prospective feed additive, we endorse this as an antibacterial new insight natural source and for the medication of considered pathogens with zoonotic impacts.


Asunto(s)
Antibacterianos , Enfermedades de los Bovinos , Diarrea , Escherichia coli , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Moringa oleifera , Extractos Vegetales , Animales , Bovinos , Klebsiella pneumoniae/efectos de los fármacos , Moringa oleifera/química , Diarrea/veterinaria , Diarrea/microbiología , Diarrea/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Farmacorresistencia Bacteriana Múltiple , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Egipto , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Klebsiella/veterinaria , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Virulencia , Simulación del Acoplamiento Molecular
11.
Sci Total Environ ; 941: 173554, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823724

RESUMEN

In the current study, the genotypic characteristics such as antimicrobial resistance and virulence genes, and plasmid replicons and phenotypic characteristics such as biofilm formation and antimicrobial resistance of 87 extended-spectrum beta-lactamase (ESBL)-producing E. coli (ESBL-Ec) isolated from 7 water bodies in northern Greece were investigated. Our data show a high prevalence (60.0 %) of ESBL-Ec in surface waters that exhibit high genetic diversity, suggesting multiple sources of their transmission into the aquatic environment. When evaluating the antimicrobial resistance of isolates, wide variation in their resistance profiles has been detected, with all isolates being multi-drug resistant (MDR). Regarding biofilm formation capacity and phylogenetic groups, the majority (54.0 %, 47/87) of ESBL-Ec were classified as no biofilm producers mainly assigned to phylogroup A (35.6 %; 31/87), followed by B2 (26.5 %; 23/87). PCR screening showed that a high proportion of the isolates tested positive for the blaCTX-M-1 group genes (69 %, 60/87), followed by blaTEM (55.2 %, 48/87), blaOXA (25.3 %, 22/87) and blaCTX-M-9 (17.2 %, 15/87). A subset of 28 ESBL-Ec strains was further investigated by applying whole genome sequencing (WGS), and among them, certain clinically significant sequence types were identified, such as ST131 and ST10. The corresponding in silico analysis predicted all these isolates as human pathogens, while a significant proportion of WGS-ESBL-Ec were assigned to extraintestinal pathogenic E. coli (ExPEC; 32.1 %), and urinary pathogenic E. coli (UPEC; 28.6 %) pathotypes. Comparative phylogenetic analysis, showed that the genomes of the ST131-O25:H4-H30 isolates are genetically linked to the human clinical strains. Here, we report for the first time the detection of a plasmid-mediated mobile colistin resistance gene in ESBL-Ec in Greece isolated from an environmental source. Overall, this study underlines the role of surface waters as a reservoir for antibiotic resistance genes and for presumptive pathogenic ESBL-Ec.


Asunto(s)
Escherichia coli , Ríos , beta-Lactamasas , Escherichia coli/genética , Grecia , beta-Lactamasas/genética , Ríos/microbiología , Filogenia
12.
Front Vet Sci ; 11: 1294575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933698

RESUMEN

Introduction: Raw diets have become popular in companion animal nutrition, but these diets may be contaminated with harmful bacteria because heat processing is not utilized to mitigate pathogens during the production process. We analyzed 24 commercially available frozen raw canine and feline diets for extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E). Methods: Samples were incubated in tryptic soy broth augmented with 50 µg/mL ampicillin to enrich for ESBL-E. ESBL-E were isolated using CHROMagar ESBL plates and isolate identification and antibiotic susceptibility testing were confirmed using the VITEK®2 instrument. Results: ESBL-E were isolated from 42% (10/24) of raw diets, with E. coli, Enterobacter cloacae complex and Klebsiella pneumoniae predominating. Most ESBL-E isolates (71%, 32/45) were multidrug-resistant. Direct plating of samples onto tryptic soy agar yielded bacterial counts >6 log10 for 2 samples from two different manufacturers. Conclusion: This preliminary study justifies further investigation into the potential contribution of raw diets to the dissemination of antibiotic resistant bacteria in companion animals and domestic living spaces.

13.
Microorganisms ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38930521

RESUMEN

Escherichia coli, a member of the commensal intestinal microbiota, is a significant aetiology of urinary tract infections (UTIs) and has a propensity for acquiring multidrug resistance characteristics, such as extended-spectrum beta-lactamases (ESBLs). Despite the increase in the incidence of ESBL-producing E. coli infections in sub-Saharan Africa, routine ESBL detection in Ghana is often absent, and molecular data on ESBL genotypes is scarce. Eleven ESBL-producing E. coli recovered from mid-stream urine samples were subjected to antimicrobial susceptibility testing and whole-genome sequence analyses. All isolates exhibited multidrug resistance, demonstrating phenotypic resistance to third-generation cephalosporins, such as cefotaxime, ceftazidime, and cefpodoxime. Three isolates demonstrated resistance to norfloxacin (a fluoroquinolone), and one isolate demonstrated intermediate resistance to ertapenem (a carbapenem). Analysis of the draft genomes identified multiple antimicrobial resistance genes including ESBL genotypes blaTEM-1B/TEM-190 (6/11 and 1/11, respectively), blaCTX-M-15/CTX-M-3 (7/11 and 1/11) and blaOXA-1/OXA-181 (3/11 and 1/11). The strains belong to 10 different serotypes and 10 different multilocus sequence types. This study provides information on phenotypic resistance in 11 ESBL E. coli from Ghana and AMR genotypes within their genomes.

14.
Curr Issues Mol Biol ; 46(6): 5909-5928, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921024

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum ß-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of ß-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.

15.
Vet Sci ; 11(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922012

RESUMEN

Raw milk and dairy products can serve as potential vectors for transmissible bacterial, viral and protozoal diseases, alongside harboring antimicrobial-resistance genes. This study monitors the changes in the antimicrobial-resistance gene pool in raw milk and cheese, from farm to consumer, utilizing next-generation sequencing. Five parallel sampling runs were conducted to assess the resistance gene pool, as well as phage or plasmid carriage and potential mobility. In terms of taxonomic composition, in raw milk the Firmicutes phylum made up 41%, while the Proteobacteria phylum accounted for 58%. In fresh cheese, this ratio shifted to 93% Firmicutes and 7% Proteobacteria. In matured cheese, the composition was 79% Firmicutes and 21% Proteobacteria. In total, 112 antimicrobial-resistance genes were identified. While a notable reduction in the resistance gene pool was observed in the freshly made raw cheese compared to the raw milk samples, a significant growth in the resistance gene pool occurred after one month of maturation, surpassing the initial gene frequency. Notably, the presence of extended-spectrum beta-lactamase (ESBL) genes, such as OXA-662 (100% coverage, 99.3% identity) and OXA-309 (97.1% coverage, 96.2% identity), raised concerns; these genes have a major public health relevance. In total, nineteen such genes belonging to nine gene families (ACT, CMY, EC, ORN, OXA, OXY, PLA, RAHN, TER) have been identified. The largest number of resistance genes were identified against fluoroquinolone drugs, which determined efflux pumps predominantly. Our findings underscore the importance of monitoring gene pool variations throughout the product pathway and the potential for horizontal gene transfer in raw products. We advocate the adoption of a new approach to food safety investigations, incorporating next-generation sequencing techniques.

16.
Open Forum Infect Dis ; 11(6): ofae296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868308

RESUMEN

Antimicrobial resistance in uropathogens commonly causing urinary tract infections (UTIs) is a growing problem internationally. Pivmecillinam, the oral prodrug of mecillinam, has been used for over 40 years, primarily in Northern Europe and Canada. It is recommended in several countries as a first-line agent for the treatment of uncomplicated UTIs (uUTIs) and is now approved in the United States. We performed a structured literature search to review the available evidence on susceptibility of common uUTI-causing uropathogens to mecillinam. Among 38 studies included in this literature review, susceptibility rates for Escherichia coli to mecillinam-including resistant phenotypes such as extended-spectrum ß-lactamase-producing E. coli-exceed 90% in most studies. High rates of susceptibility were also reported among many other uropathogens including Klebsiella spp., Enterobacter spp., and Citrobacter spp. In the current prescribing climate within the United States, pivmecillinam represents a viable first-line treatment option for patients with uUTI.

17.
SAGE Open Med ; 12: 20503121241259993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881595

RESUMEN

Background: Urinary tract infections caused by extended-spectrum beta-lactamase organisms pose a significant concern worldwide. Given the escalating prevalence of drug resistance and the limited data on the effectiveness of oral antibiotics in treating these infections, this study aimed to assess the clinical outcomes in adult patients with extended-spectrum beta-lactamase urinary tract infections treated with oral antibiotics. Methods: A retrospective observational cohort study was conducted at King Abdulaziz Medical City, Saudi Arabia, from January 2018 to December 2021. It included patients ⩾18 years with complicated or uncomplicated urinary tract infections from extended-spectrum beta-lactamase Enterobacterales and treated with oral antibiotics as step-down or mainstay therapy. All-cause clinical failure within 30 days post-discharge was evaluated as the efficacy outcome. Statistical analyses were performed using SPSS software. Results: Out of 643 screened patients, 152 patients met the inclusion criteria. The patients were divided into oral step-down therapy (51.3%) and oral-only (48.7%) groups. The majority (69.1%) were females, with a mean age of 62 years. Complicated urinary tract infections were diagnosed in (75.5%) of cases, and the predominant pathogen was E. coli (79.6%). Clinical failure was observed in 23.1% in the oral step-down group and 13.5% in the oral-only group, with no significant difference (p = 0.128). Total antibiotics duration was significantly lower in the oral-only group (8 days vs. 12.2 days; p < 0.001). Binary logistic regression identified elder age, diabetes mellitus history, and prior extended-spectrum beta-lactamase infection as predictors of clinical failure. Conclusion: This study suggests that both step-down or primary oral antibiotic treatment yielded similar clinical outcomes in managing patients with extended-spectrum beta-lactamase urinary tract infections. Further prospective studies are required to validate these findings.

18.
Clin Infect Dis ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902929

RESUMEN

The in vitro susceptibility testing interpretive criteria (STIC) for TZP against Enterobacterales were recently updated by the Food and Drug Administration (FDA), Clinical & Laboratory Standards Institute (CLSI), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). The United States Committee on Antimicrobial Susceptibility Testing (USCAST) also recently reviewed TZP STIC for Enterobacterales and arrived at different STIC for Enterobacterales and herein we explain our recommendations and rationale behind them. Based on our review of the available data, USCAST does not recommend TZP STIC for certain Enterobacterales species that have a moderate to high likelihood of clinically significant AmpC production (E. cloacae, C. freundii, and K. aerogenes only) or for third-generation cephalosporin-non-susceptible (3GC-NS) Enterobacterales. USCAST recommends a TZP susceptibility breakpoint of ≤ 16/4 mg/L for third-generation cephalosporin-susceptible (3GC-S) Enterobacterales but only endorses the use of extended infusion TZP regimens for patients with infections due to these pathogens.

19.
J Infect Chemother ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825003

RESUMEN

Uropathogenic Escherichia coli (UPEC) is a typical cystitis-causing organism that can migrate from the vagina to the bladder and cause recurrent cystitis (RC). Few reports have compared the characteristics of urinary and vaginal UPEC in patients with RC. We carried out molecular biological analyses of Escherichia coli (E. coli) strains and their antimicrobial susceptibility to assess the association between urinary and vaginally UPEC. We included E. coli isolated from urinary and vaginal samples at the onset of cystitis in postmenopausal women with RC between 2014 and 2019 in our hospital. Pulsed-field gel electrophoresis (PFGE) was performed using a restriction enzyme (Xba I). These sequences were compared with 17 antimicrobial susceptibilities determined by a micro-liquid dilution method. Multilocus sequence typing (MLST) and classification of extended-spectrum ß-lactamase (ESBL) genotypes by multiplex polymerase chain reaction (PCR) were performed on ESBL-producing E. coli. We analyzed 14 specimens (each seven urine and vaginal) from seven patients in total. On PFGE, the similarity of urinary and vaginal E. coli per patient ranged from 89.5 to 100 %, including four patients with 100 % matches. MLST demonstrated that 29 % (4/14 specimens) were strain sequence type 131. Two specimens contained ESBL-producing strains and identified the CTX-M-27 genotype for each specimen. For each patient, antimicrobial susceptibilities between urinary and vaginal E. coli were mostly identical. Thus, urinary- and vaginally-derived E. coli were identical in postmenopausal women with RC. Management targeting both urinary and vaginal UPEC is essential for RC, indicating the importance of a vagina-targeted approach.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38842743

RESUMEN

One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...