Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.281
Filtrar
1.
Respir Med Case Rep ; 51: 102087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099663

RESUMEN

Efficacy of mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARDS) suggests bioactive bone marrow MSC extracellular vesicles (BM-MSC EVs) may be effective. A patient with severe COVID-19 associated ARDS who was presumed to expire was treated with a BM-MSC EV preparation (14 doses over two months) as a rescue treatment for refractory COVID ARDS. Near complete reversal of lung inflammation and fibrosis (per computed tomography), near complete restoration of mobility, hospital discharge (3 months) with resumption of normal activities of daily living (one year) and return to work occurred. No adverse events occurred despite repeated dosing of investigational product, highlighting safety of this potential therapy for ARDS.

2.
Sci Rep ; 14(1): 18176, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107428

RESUMEN

This research paper introduces an avant-garde poly-input DC-DC converter (PIDC) meticulously engineered for cutting-edge energy storage and electric vehicle (EV) applications. The pioneering converter synergizes two primary power sources-solar energy and fuel cells-with an auxiliary backup source, an energy storage device battery (ESDB). The PIDC showcases a remarkable enhancement in conversion efficiency, achieving up to 96% compared to the conventional 85-90% efficiency of traditional converters. This substantial improvement is attained through an advanced control strategy, rigorously validated via MATLAB/Simulink simulations and real-time experimentation on a 100 W test bench model. Simulation results reveal that the PIDC sustains stable operation and superior efficiency across diverse load conditions, with a peak efficiency of 96% when the ESDB is disengaged and an efficiency spectrum of 91-95% during battery charging and discharging phases. Additionally, the integration of solar power curtails dependence on fuel cells by up to 40%, thereby augmenting overall system efficiency and sustainability. The PIDC's adaptability and enhanced performance render it highly suitable for a wide array of applications, including poly-input DC-DC conversion, energy storage management, and EV power systems. This innovative paradigm in power conversion and management is poised to significantly elevate the efficiency and reliability of energy storage and utilization in contemporary electric vehicles and renewable energy infrastructures.

4.
Cells ; 13(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39195200

RESUMEN

BACKGROUND: Large granular lymphocyte leukemias (LGLLs) are rare lymphoproliferative malignancies caused by clonal expansion of granular lymphocytes. T-cell LGLL and natural killer (NK) cell LGLL are defined based on their cellular origin. Their clinical manifestation and pathophysiology vary depending on the subtype and include, e.g., neutropenia, anemia, recurrent infections, and autoimmunity. A limited number of available patient-derived cell lines are considered valuable tools to study the biology of these malignancies. They differ in the expression of lineage-specific surface markers, but generally contain cytotoxic effector molecules in characteristic granules. METHODS: We investigated the presence and release of lysosome-associated effector proteins in patient-derived LGLL cell lines by flow and imaging cytometry, by Western blotting and by bottom-up proteomics profiling. RESULTS: The tested cell lines did not express FasL (CD178), but did express CD26/DPP4+. Intracellularly, we detected major differences in the abundance and subcellular distribution of granzymes, perforin, and granulysin. Similar differences were seen in enriched lysosome-related effector vesicles (LREVs). The proteomics profiling of enriched EVs from an NK-LGLL line (NKL) and a T-LGLL line (MOTN-1), confirmed individual profiles of effector molecules. CONCLUSION: Our analyses underscore the individual distribution of effector proteins but also open new routes to define the role of intra- and extracellular granules in the disease manifestation or pathology of LGLLs.


Asunto(s)
Vesículas Extracelulares , Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/patología , Leucemia Linfocítica Granular Grande/metabolismo , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Gránulos Citoplasmáticos/metabolismo , Lisosomas/metabolismo , Proteómica , Células Asesinas Naturales/metabolismo , Perforina/metabolismo , Granzimas/metabolismo , Antígenos de Diferenciación de Linfocitos T
5.
Biomaterials ; 313: 122748, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180918

RESUMEN

Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.

6.
Front Med (Lausanne) ; 11: 1420281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144666

RESUMEN

The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.

7.
Methods Mol Biol ; 2843: 25-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141292

RESUMEN

Bacterial membrane vesicles (BMVs) are extracellular vesicles secreted by either Gram-positive or Gram-negative bacteria. These BMVs typically possess a diameter between 20 and 250 nm. Due to their size, when these BMVs are suspended in another medium, they could be constituents of a colloidal system. It has been hypothesized that investigating BMVs as colloidal particles could help characterize BMV interactions with other environmentally relevant surfaces. Developing a more thorough understanding of BMV interactions with other surfaces would be critical for developing predictive models of their environmental fate. However, this bio-colloidal perspective has been largely overlooked for BMVs, despite the wealth of methods and expertise available to characterize colloidal particles. A particular strength of taking a more colloid-centric approach to BMV characterization is the potential to quantify a particle's attachment efficiency (α). These values describe the likelihood of attachment during particle-particle or particle-surface interactions, especially those interactions which are governed by physicochemical interactions (such as those described by DLVO and xDLVO theory). Elucidating the influence of physical and electrochemical properties on these attachment efficiency values could give insights into the primary factors driving interactions between BMVs and other surfaces. This chapter details methods for the characterization of BMVs as colloids, beginning with size and surface charge (i.e., electrophoretic mobility/zeta potential) measurements. Afterward, this chapter will address experimental design, especially column experiments, targeted for BMV investigation and the determination of α values.


Asunto(s)
Coloides , Coloides/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Membrana Celular/metabolismo , Membrana Celular/química , Bacterias/metabolismo , Bacterias/química , Tamaño de la Partícula , Propiedades de Superficie
8.
Eur J Med Chem ; 276: 116658, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39088999

RESUMEN

The enterovirus is a genus of single-stranded, highly diverse positive-sense RNA viruses, including Human Enterovirus A-D and Human Rhinovirus A-C species. They are responsible for numerous diseases and some infections can progress to life-threatening complications, particularly in children or immunocompromised patients. To date, there is no treatment against enteroviruses on the market, except for polioviruses (vaccine) and EV-A71 (vaccine in China). Following a decrease in enterovirus infections during and shortly after the (SARS-Cov2) lockdown, enterovirus outbreaks were once again detected, notably in young children. This reemergence highlights on the need to develop broad-spectrum treatment against enteroviruses. Over the last year, our research team has identified a new class of small-molecule inhibitors showing anti-EV activity. Targeting the well-known hydrophobic pocket in the viral capsid, these compounds show micromolar activity against EV-A71 and a high selectivity index (SI) (5h: EC50, MRC-5 = 0.57 µM, CC50, MRC-5 >20 µM, SI > 35; EC50, RD = 4.38 µM, CC50, RD > 40 µM, SI > 9; 6c: EC50, MRC-5 = 0.29 µM, CC50, MRC-5 >20 µM, SI > 69; EC50, RD = 1.66 µM, CC50, RD > 40 µM, SI > 24; Reference: Vapendavir EC50, MRC-5 = 0.36 µM, CC50, MRC-5 > 20 µM, EC50, RD = 0.53 µM, CC50, RD > 40 µM, SI > 63). The binding mode of these compounds in complex with enterovirus capsids was analyzed and showed a series of conserved interactions. Consequently, 6c and its derivatives are promising candidates for the treatment of enterovirus infections.


Asunto(s)
Antivirales , Cápside , Enterovirus Humano A , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Enterovirus Humano A/efectos de los fármacos , Cápside/efectos de los fármacos , Cápside/metabolismo , Relación Estructura-Actividad , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga
9.
J Zhejiang Univ Sci B ; 25(8): 633-655, 2024 Aug 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39155778

RESUMEN

Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Exosomas/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Transporte Biológico
10.
Sci Rep ; 14(1): 19282, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164403

RESUMEN

QSPR mathematically links physicochemical properties with the structure of a molecule. The physicochemical properties of chemical molecules can be predicted using topological indices. It is an effective method for eliminating costly and time-consuming laboratory tests. We established a QSPR between mev-degree and mve-degree-based indices and the physical properties of benzenoid hydrocarbons. To compute these indices, we designed a program using Maple software and the correlation between indices and physical properties was developed using the SPSS software. Our study reveals that the mve-degree-based sum-connectivity ( χ mve ) and atom bond connectivity ( A B C mve ) index, mev-degree-based Randic ( R mev ) and Zagreb ( M mev ) index are the three most significant parameters and have good prediction ability for the physicochemical properties. We examined that R mev predicts the molar refractivity and boiling point, χ mve predicts the LogP and enthalpy, A B C mve predicts the molecular weight, M mev predicts the Gibb's energy, Pie-electron energy and Henry's law. Moreover, we computed the indices for the linear [n]-phenylen.

11.
Biomedicines ; 12(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39200270

RESUMEN

Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients.

12.
J Extracell Vesicles ; 13(8): e12500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39183543

RESUMEN

The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.


Asunto(s)
Ejercicio Físico , Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Neoplasias/prevención & control , Neoplasias/terapia , Ejercicio Físico/fisiología , Animales , Músculo Esquelético/metabolismo
13.
ACS Appl Bio Mater ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175406

RESUMEN

In the relentless pursuit of innovative diagnostic tools for cancer, this review illuminates the cutting-edge realm of extracellular vesicles (EVs) and their biomolecular cargo detection through advanced optical biosensing techniques with a primary emphasis on their significance in cancer diagnosis. From the sophisticated domain of nanomaterials to the precision of surface plasmon resonance, we herein examine the diverse universe of optical biosensors, emphasizing their specified applications in cancer diagnosis. Exploring and understanding the details of EVs, we present innovative applications of enhancing and blending signals, going beyond the limits to sharpen our ability to sense and distinguish with greater sensitivity and specificity. Our special focus on cancer diagnosis underscores the transformative potential of optical biosensors in early detection and personalized medicine. This review aims to help guide researchers, clinicians, and enthusiasts into the captivating domain where light meets cellular secrets, creating innovative opportunities in cancer diagnostics.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39099339

RESUMEN

Significance: Release of extracellular vesicles (EVs) by various cell types has been shown to mediate the delivery of biologically active payloads from donor cells to recipient cells; however, it remains unclear what cell types these EVs come from. With a focus on fluorescent reporters to monitor the release of EVs, especially those under the control of cell type-specific promoters, we address the translational relevance of genetic tools in cultured cells, normal tissues, and in models of development, injury, cancer, and wound healing. Recent Advances: It is well established that EVs are released by many cell types in the body via fusion and release processes at the plasma membrane. Since there remains debate about what fraction of EVs are released through regulated endosomal trafficking pathways versus nonspecific mechanisms, the development and validation of novel molecular tools are important to address the cellular source of EVs. Critical Issues: There is a need to develop and characterize new cell type-specific reporter mouse models that build upon the examples detailed here to identify the cellular source of EVs with genetic approaches being useful in addressing these critical limitations. Future Directions: Advances in reporter systems will drive a better understanding of EV subsets to identify compartment-specific EV localization to guide the development of more translationally relevant models for the wound healing field.

15.
N Biotechnol ; 83: 101-109, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079597

RESUMEN

Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.

16.
J Med Virol ; 96(8): e29838, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081166

RESUMEN

Enteroviruses are important human pathogens with diverse serotypes, posing a major challenge to develop vaccines for individual serotypes, the success of polio vaccines in controlling and eradicating polio, along with the recent emergence and high prevalence of enterovirus-caused infectious diseases, highlights the importance of enterovirus vaccine development. Given our previous report on enteroviruses weakened by the 2 A S/T125A mutation, we assessed the potential of the EV-A71 2A-125A mutant as a vaccine candidate to address this challenge. We found that the 2A-125A mutant caused transient mild symptoms, low viral loads, and no significant pathological changes mild pathological changes in hSCARB2-KI mice, producing long-lasting cross-neutralizing antibodies against two EV-A71 wild strains. Pre-exposure to the 2A-125A mutant substantially protected against the EV-A71 Isehara wild-type strain, causing minor pathologies, significantly reducing muscle and lung inflammation, and preventing neurological damage, with reduced viral loads in vivo. Pre-exposure also distinctly suppressed the expression of pro-inflammatory cytokines, correlating to the severity of clinical symptoms. Collectively, the EV-A71 2A-125A mutant was attenuated and could generate a robust and protective immune response, suggesting its potential as a vaccine candidate and global solution for specific enterovirus vaccine development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enterovirus Humano A , Infecciones por Enterovirus , Vacunas Atenuadas , Carga Viral , Vacunas Virales , Animales , Enterovirus Humano A/inmunología , Enterovirus Humano A/genética , Infecciones por Enterovirus/prevención & control , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Humanos , Desarrollo de Vacunas , Femenino , Mutación , Citocinas
17.
Emerg Microbes Infect ; 13(1): 2382235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39017655

RESUMEN

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection. Single cell transcriptomics of a mixed neuronal population reveal higher viral RNA load in motor neurons, suggesting higher infectivity and replication of EV-A71 in motor neurons. The elevated RNA load in motor neurons correlates with the downregulation of ferritin-encoding genes. Subsequent analysis confirms that neurons infected with EV-A71 undergo ferroptosis, as evidenced by increased levels of labile Fe2+ and peroxidated lipids. Notably, the Fe2+ chelator Deferoxamine improves mitochondrial function and promotes survival of motor neurons by 40% after EV-A71 infection. These findings deepen understanding of the molecular pathogenesis of EV-A71 infection, providing insights which suggest that improving mitochondrial respiration and inhibition of ferroptosis can mitigate the impact of EV-A71 infection in the central nervous system.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Ferroptosis , Neuronas Motoras , Ferroptosis/efectos de los fármacos , Humanos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Enterovirus Humano A/efectos de los fármacos , Neuronas Motoras/virología , Neuronas Motoras/metabolismo , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Replicación Viral , Mitocondrias/metabolismo , Deferoxamina/farmacología , Carga Viral , Hierro/metabolismo , Ferritinas/metabolismo , Ferritinas/genética
18.
J Extracell Vesicles ; 13(7): e12490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051742

RESUMEN

Extracellular vesicles (EVs) are emerging as promising carriers for the delivery of therapeutic biologics. Genetic engineering represents a robust strategy for loading proteins of interest into EVs. Identification of EV-enriched proteins facilitates protein cargo loading efficiency. Many EV-enriched proteins are sorted into EVs via an endosomal sorting complex required for transport (ESCRT)-dependent pathway. In parallel, viruses hijack this EV biosynthesis machinery via conserved late domain motifs to promote egress from host cells. Inspired by the similarity of biogenesis between EVs and viruses, we developed a synthetic, Late domain-based EV scaffold protein that enables the display of a set of single chain variable fragments (scFvs) on the EV surface. We named this scaffold the Late domain-based exosomal antibody surface display platform (LEAP). We applied the LEAP scaffold to reprogramme HEK293T cell-derived EVs to elicit T-cell anti-tumor immunity by simultaneously displaying αPD-L1 and αCD3 scFvs on the EV surface (denoted as αPD-L1×αCD3 bispecific T-cell engaging exosomes, BiTExos). We demonstrated that αPD-L1×αCD3 BiTExos actively redirected T cells to bind to PD-L1+ tumor cells, promoting T-cell activation, proliferation and tumoricidal cytokine production. Furthermore, the αPD-L1×αCD3 BiTExos promoted T-cell infiltration into the tumor microenvironment to mitigate the tumor burden in vivo. Our study suggested that the LEAP scaffold may serve as a platform for EV surface display and could be applied for a broad range of EV-based biomedical applications.


Asunto(s)
Antígeno B7-H1 , Complejo CD3 , Vesículas Extracelulares , Anticuerpos de Cadena Única , Linfocitos T , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Complejo CD3/inmunología , Complejo CD3/metabolismo , Células HEK293 , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Anticuerpos de Cadena Única/inmunología , Exosomas/metabolismo , Exosomas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Activación de Linfocitos/inmunología
19.
MethodsX ; 12: 102783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966713

RESUMEN

In recent years, frequent and substantial area-wide power outages have underscored the critical need for cities to possess robust backup power sources capable of swift response to prevent prolonged power system disruptions. Electric vehicles can contribute electricity to the power grid using vehicle-to-grid technology. The power delivered by electric vehicles in this context is termed as response capability. However, existing studies have overlooked response capability dynamics during transitions between electric vehicle states-such as the shift from charging or discharging to an idle state, thereby hindering a comprehensive understanding of this aspect. Hence, this paper introduces a multi-timescale response capability prediction model that evaluates the electric vehicle's state of charge to ensure users' requirements are met for upcoming trips. To better assess users' travel demand, the gravity model is employed as a precursor to response capability prediction to further enhance the validity of the prediction outcomes. Three neighborhoods in Los Angeles have been chosen for analysis: Downtown, Lincoln Heights, and Silver Lake. Predictions indicate that neglecting the response capability when electric vehicles undergo state transformation can lead to a differential response capability ranging from 2000 kWh to 4000 kWh, resulting in a loss of prediction accuracy by 20 % to 25 %.•The response capability of EV is non-zero during state transformations•Users' travel demand assessment•Seamless integration of vehicle-to-grid technology into the power grid.

20.
J Biomed Sci ; 31(1): 73, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010093

RESUMEN

Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Vacunas Virales , Humanos , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , Infecciones por Enterovirus/virología , Enterovirus/inmunología , Vacunas Virales/inmunología , Desarrollo de Vacunas , Brotes de Enfermedades/prevención & control , Epidemias/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA