Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Oncol Lett ; 27(6): 240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623570

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in the head and neck, and among the OSCCs, tongue squamous cell carcinoma (TSCC) is one of the most common types. Although therapy strategies have recently advanced, the prognosis of TSCC has not substantially improved. Metastasis is one of the main causes of patient mortality in TSCC; therefore, it is necessary to elucidate the mechanism by which TSCC metastasis is regulated. In the present study, the early growth response 1 (Egr-1) expression in TSCC was analyzed based on GEO datasets and the effect of Egr-1 in TSCC tumor cell migration and invasion was measured using Transwell assay. By overexpressing dual-specificity protein phosphatase 1 (DUSP1) in cells with Egr-1 knockdown using lentivirus infection, the role of DUSP1 in Egr-1-regulated TSCC cell migration and invasion was determined. By using luciferase and ChIP assays, the mechanism behind how DUSP1 is regulated by Egr-1 was detected. In the present study, it was demonstrated that Egr-1 was downregulated in TSCC and the knockdown of Egr-1 increased TSCC cell migration and invasion. The expression of Egr-1 was also correlated with DUSP1. The overexpression of DUSP1 in Egr-1 knockdown cells, reduced the level of cell migration and invasion. Furthermore, it was demonstrated that knockdown of Egr-1 inhibited the promoter activity of DUSP1 and the site through which Egr-1 regulates DUSP1 transcription was identified. In conclusion, the present study demonstrated that Egr-1 regulates TSCC cell migration and invasion through modulating DUSP1, suggesting the potential of Egr-1 and DUSP1 as therapy targets for TSCC.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38219212

RESUMEN

OBJECTIVES: To evaluate relative expression of genes with the potential to translate environmental stimuli into long-term alterations in the brain - namely Early Growth Response (EGR)1, EGR3, and Cryptochrome Circadian Regulator 2 (CRY2) - in peripheral blood from patients with Bipolar Disorder (BD), Schizophrenia (SZ), Major Depressive Disorder (MDD) and healthy controls (HC). METHODS: Thirty individuals ranging from 18 to 60 years were recruited for each group (BD, SZ, MDD or HC) from a Brazilian public hospital. Therefore, individuals' peripheral blood was collected and EGR1, EGR3 and CRY2 gene expression analyzed by PCR Real Time. RESULTS: EGR1 mRNA levels are significantly lower in psychiatric patients when compared to HC, but there is no difference for EGR3 and CRY2. Exploring the findings for each diagnosis, there is a significant difference between each diagnosis group only for EGR1, which was lower in BD, MDD and SZ as compared to HC. No significant correlations were found between gene expression and clinical features. CONCLUSIONS: EGR1 is downregulated in psychiatric patients, regardless of the diagnosis and may be a potential common target in major psychiatric disorders. EGR1, as a transcription factor, modulates many other genes and participates in crucial neuronal and synaptic processes, such as plasticity, neurotransmitters metabolism, vesicular transport and signaling pathways. The study of EGR1 and its upstream regulators in psychiatry might lead to potential new therapeutic targets.

3.
Cell Commun Signal ; 22(1): 44, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233877

RESUMEN

Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.


Asunto(s)
Meningitis Bacterianas , Meningitis por Escherichia coli , Humanos , Recién Nacido , Barrera Hematoencefálica/microbiología , Células Endoteliales/metabolismo , Escherichia coli , Meningitis Bacterianas/metabolismo , Meningitis por Escherichia coli/metabolismo
4.
Neurobiol Aging ; 135: 60-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185053

RESUMEN

Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Femenino , Animales , Humanos , Hormona Luteinizante/metabolismo , Regulación hacia Abajo , Acetilcolinesterasa , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo , Cognición , Ovariectomía , Ratones Transgénicos , Modelos Animales de Enfermedad , Hipocampo/metabolismo
5.
Eur J Pharmacol ; 964: 176294, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38158112

RESUMEN

Early transcription factors play critical roles in the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Early growth response 1 (EGR1) is a transcription factor essential for various biological processes, including regulation of metabolism, differentiation, and inflammation. However, its role in ALI has been poorly reported. In this study, we aimed to determine the effect of EGR1 on ALI to gain insights into the theoretical basis for further treatment of ALI. By employing concerted molecular biology techniques, we showed that EGR1 protein was upregulated in mice. EGR1 protein was upregulated in mice and human lung epithelial cells in response to lipopolysaccharide (LPS) stimulation. EGR1 knockdown promoted autophagy and reduced LPS-induced pro-inflammatory mediator production. EGR1 was preferentially bound to the GCGTGGGCG motif region and EGR1-binding peak-related genes were mainly enriched in autophagy and injury stress-related pathways. Additionally, EGR1 promoted Krüppel-like factor 5 (KLF5) transcription by binding to the KLF5 promoter region, and KLF5 knockdown significantly decreased inflammatory damage, suggesting that EGR1 promotes ALI progression by regulating KLF5 expression. Furthermore, ML264, an inhibitor of the EGR1/KLF5 pathway axis, displayed a protective role in ALI to reduce inflammation. In conclusion, our findings demonstrate the potential of EGR1 knockdown to inhibit KLF5 and promote autophagy, further reducing the inflammatory response to mitigate ALI/ARDS. The EGR1/KLF5 pathway axis may be a valuable therapeutic target for the treatment of ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Proteína 1 de la Respuesta de Crecimiento Precoz , Factores de Transcripción de Tipo Kruppel , Síndrome de Dificultad Respiratoria , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Autofagia , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762598

RESUMEN

Renal ischemia-reperfusion (IR) causes acute kidney injury due to oxidative stress, tubular inflammation, and apoptosis. Early growth response 1 (Egr-1) is a transcription factor belonging to the immediate early gene family and is known to regulate cell proliferation, differentiation, and survival. Egr-1 expression is induced during renal IR; however, its pathogenic role and underlying mechanisms remain elusive. Here, we investigated the function of Egr-1 during renal IR using C57BL/6 mice and cultured renal proximal tubular HK-2 cells. Egr-1 expression increased immediately, 1-4 h after IR, whereas plasma creatinine and oxidative stress increased progressively over 24 h after IR. Egr-1 overexpression showed greater increases in plasma creatinine, renal tubular injury, and apoptosis than in the control after IR. Egr-1 overexpression also showed significant neutrophil infiltration and increased pro-inflammatory cytokines (TNF-α, MIP-2, and IL-6) after IR. Consistently, proximal tubular HK-2 cells showed immediate induction of Egr-1 at 1 h after hypoxia and reoxygenation, where its downstream target, p53, was also increased. Interestingly, Egr-1 overexpression enhanced p53 levels and tubular apoptosis, while the knockdown of Egr-1 reduced p53 levels and tubular apoptosis after H2O2 treatment. Egr-1 was recruited to the p53 promoter, which activates p53 transcription, and Egr-1 induction occurred through Erk/JNK signaling kinases, as the specific inhibitors blocked its expression. Taken together, these results show that Egr-1 is upregulated in proximal tubular cells and contributes to renal IR injury by inducing tubular apoptosis, mediated by p53 transcriptional activation. Thus, Egr-1 could be a potential therapeutic target for renal IR injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Creatinina , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Apoptosis , Isquemia
7.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762678

RESUMEN

Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor 4 Similar a Kruppel , Activación Transcripcional , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
8.
Arthritis Res Ther ; 25(1): 151, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596660

RESUMEN

BACKGROUND: The early growth response 1 (EGR1) is a central transcription factor involved in systemic sclerosis (SSc) pathogenesis. Iguratimod is a synthesized anti-rheumatic disease-modifying drug, which shows drastic inhibition to EGR1 expression in B cells. This study is aiming to investigate the anti-fibrotic effect of iguratimod in SSc. METHODS: EGR1 was detected by immunofluorescence staining real-time PCR or western blot. Iguratimod was applied in EGR1 overexpressed or knockdown human dermal fibroblast, bleomycin pre-treated mice, tight skin 1 mice, and SSc skin xenografts. RNA sequencing was performed in cultured fibroblast and xenografts to identify the iguratimod regulated genes. RESULTS: EGR1 overexpressed predominantly in non-immune cells of SSc patients. Iguratimod reduced EGR1 expression in fibroblasts and neutralized changes of EGR1 response genes regulated by TGFß. The extracellular matrix (ECM) production and activation of fibroblasts were attenuated by iguratimod while EGR1 overexpression reversed this effect of iguratimod. Iguratimod ameliorated the skin fibrosis induced by bleomycin and hypodermal fibrosis in TSK-1 mice. Decreasing in the collagen content as well as the density of EGR1 or TGFß positive fibroblasts of skin xenografts from naïve SSc patients was observed after local treatment of iguratimod. CONCLUSION: Targeting EGR1 expression is a probable underlying mechanism for the anti-fibrotic effect of iguratimod.


Asunto(s)
Antirreumáticos , Proteína 1 de la Respuesta de Crecimiento Precoz , Esclerodermia Sistémica , Animales , Humanos , Ratones , Bleomicina/toxicidad , Cromonas , Fibrosis , Esclerodermia Sistémica/tratamiento farmacológico , Proteína 1 de la Respuesta de Crecimiento Precoz/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/genética
9.
Exp Ther Med ; 26(2): 365, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37408859

RESUMEN

Astragaloside IV (AS-IV) is a naturally occurring agent that confers several wide-ranging reported pharmacological effects, such as cardioprotective, antioxidative and pro-angiogenic activities. Although it was previously reported that AS-IV could attenuate neonatal rat myocardial ischemia-reperfusion injury, the possible effects of AS-IV on the development of cardiac hypertrophy associated with intrauterine hypoxia (IUH) remain unclear. The present study established a model of IHU by placing the pregnant rats in a plexiglass chamber with an oxygen supply of 10% before neonatal rat delivery. To investigate the in vivo effect of AS-IV on cardiac hypertrophy, neonatal rats with hypertension were randomly grouped to receive AS-IV (20 mg/kg), AS-IV (40 mg/kg), AS-IV (80 mg/kg) or vehicle for 12 weeks, followed by left ventricular (LV) hemodynamics and heart tissue histological analysis. Rats born from mothers with IHU displayed pathological features of cardiac hypertrophy. However, AS-IV 40 and 80 mg/kg significantly decreased the heart/body weight (BW), LV mass (LVM)/BW, heart mass/tibia length (TL) and LVM/TL ratios. H&E staining showed that 40 and 80 mg/kg AS-IV prevented the morphometric changes induced by IHU. According to data from LV hemodynamics measurements, AS-IV 80 mg/kg reversed the increased systolic blood pressure, diastolic blood pressure, LV systolic pressure, LV end-diastolic pressure, dP/dt maximum and heart rate induced by IHU. Mechanistically, ERK1/2 activation and early growth response 1 (Egr-1) protein expression were both upregulated by IHU induction, which was reversed by AS-IV treatment. In conclusion, these data suggested that AS-IV could attenuate cardiac hypertrophy in neonatal rats born from mothers with IHU through the protein kinase C ß type isoform 2/Egr-1 pathway, but the underlying mechanism requires further investigation.

10.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L143-L154, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401387

RESUMEN

Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.


Asunto(s)
COVID-19 , Humanos , Diferenciación Celular , COVID-19/complicaciones , Regulación de la Expresión Génica , Inflamación , Factores de Transcripción/genética
12.
Oncol Rep ; 50(1)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264970

RESUMEN

Lentinan (LNT) isolated from Lentinus edodes is a vital host defense potentiator previously utilized as an adjuvant in cancer therapy. The present study investigated the effect of LNT on the mouse hepatocellular carcinoma (HCC) cell line Hepa1­6 and its possible mechanism. Mouse HCC apoptosis and its potential associated mechanism were then explored using in vitro and in vivo approaches. For in vitro approaches, the effect of LNT on the proliferation of Hepa1­6 cells was investigated by Cell Counting Kit­8 assay. Annexin V­FITC staining and flow cytometry were applied to explore HCC apoptosis. Western blotting was used to analyze related proteins, such as EGR1, phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (p­Akt), protein kinase B (Akt), B lymphocyte­2 (Bcl­2), Bcl2 family­associated X protein (Bax), etc. Cellular immunofluorescence staining was employed to assess the localization and expression of EGR1 and PTEN in nuclear and cytoplasmic fractions of Hepa1­6 cells. The association between EGR1 and PTEN was explored by EGR1 overexpression in cell lines. For in vivo methods, a mouse model of diethylnitrosamine (DEN)­induced primary liver cancer was established using C57BL/6 mice to investigate the inhibitory effect of LNT on liver cancer. Histopathology of liver tissue from mice was detected by hematoxylin­eosin staining and immunohistochemical assay. In vitro and in vivo results showed that LNT can inhibit the proliferation and promote the apoptosis of mouse HCC cells. Besides, LNT increased the expression of EGR1 in Hepa1­6 cells, which is translocated to the nucleus to function as a transcriptional factor. EGR1 then activates the expression of the tumor suppressor PTEN, thereby inhibiting the activation of the AKT signaling pathway. These data revealed a novel anti­tumor mechanism by which LNT can induce apoptosis to inhibit mouse HCC progression through the EGR1/PTEN/AKT axis. These results provide a scientific basis for the potential use of LNT in drug development and clinical applications associated with primary liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Lentinano/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Ratones Endogámicos C57BL , Ratones Endogámicos , Transducción de Señal , Apoptosis , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proliferación Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo
13.
Front Cardiovasc Med ; 10: 1162662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057102

RESUMEN

Significance: Cardiovascular diseases are seen to be a primary cause of death, and their prevalence has significantly increased across the globe in the past few years. Several studies have shown that cell death is closely linked to the pathogenesis of cardiovascular diseases. Furthermore, many molecular and cellular mechanisms are involved in the pathogenesis of the cardiac cell death mechanism. One of the factors that played a vital role in the pathogenesis of cardiac cell death mechanisms included the early growth response-1 (Egr-1) factor. Recent Advances: Studies have shown that abnormal Egr-1 expression is linked to different animal and human disorders like heart failure and myocardial infarction. The biosynthesis of Egr-1 regulates its activity. Egr-1 can be triggered by many factors such as serum, cytokines, hormones, growth factors, endotoxins, mechanical injury, hypoxia, and shear stress. It also displays a pro-apoptotic effect on cardiac cells, under varying stress conditions. EGR1 mediates a broad range of biological responses to oxidative stress and cell death by combining the acute changes occurring in the cellular environment with sustained changes in gene expression. Future Directions: The primary regulatory role played by the Egr-1-targeting DNAzymes, microRNAs, and oligonucleotide decoy strategies in cardiovascular diseases were identified to provide a reference to identify novel therapeutic targets for cardiovascular diseases.

14.
Immunobiology ; 228(3): 152377, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933529

RESUMEN

Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1ß, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.


Asunto(s)
Neumonía , Pseudomonas aeruginosa , Animales , Ratones , Inflamación , Pulmón/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , ARN Mensajero , Factores de Transcripción
15.
Genesis ; 61(3-4): e23515, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36949241

RESUMEN

Early growth response 1 (EGR1) mediates transcriptional programs that are indispensable for cell division, differentiation, and apoptosis in numerous physiologies and pathophysiologies. Whole-body EGR1 knockouts in mice (Egr1KO ) have advanced our understanding of EGR1 function in an in vivo context. To extend the utility of the mouse to investigate EGR1 responses in a tissue- and/or cell-type-specific manner, we generated a mouse model in which exon 2 of the mouse Egr1 gene is floxed by CRISPR/Cas9 engineering. The floxed Egr1 alleles (Egr1f/f ) are designed to enable spatiotemporal control of Cre-mediated EGR1 ablation in the mouse. To confirm that the Egr1f/f alleles can be abrogated using a Cre driver, we crossed the Egr1f/f mouse with a global Cre driver to generate the Egr1 conditional knockout (Egr1d/d ) mouse in which EGR1 expression is ablated in all tissues. Genetic and protein analysis confirmed the absence of exon 2 and loss of EGR1 expression in the Egr1d/d mouse, respectively. Moreover, the Egr1d/d female exhibits overt reproductive phenotypes previously reported for the Egr1KO mouse. Therefore, studies described in this short technical report underscore the potential utility of the murine Egr1 floxed allele to further resolve EGR1 function at a tissue- and/or cell-type-specific level.


Asunto(s)
Sistemas CRISPR-Cas , Factores de Transcripción , Ratones , Femenino , Animales , Factores de Transcripción/genética , Alelos , Exones
16.
Int J Mol Med ; 51(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633140

RESUMEN

Exercise is the main treatment for patients with metabolic­associated fatty liver disease (MAFLD); however, it may be difficult for some patients to adhere to or tolerate an exercise regime. Thus, finding a treatment alternative to exercise is of particular importance. The authors have previously demonstrated that the high expression of microRNA (miRNA/miR)­212 promotes lipogenesis in vitro. The present study aimed to explore the therapeutic potential, as well as the mechanisms of action of miR­212 in MAFLD. The expression of miR­212­3p, but not that of miR­212­5p, was found to be significantly elevated in MAFLD and to be decreased by exercise. Compared with exercise treatment, the inhibition of miR­212­3p expression in a mouse model fed a high­fat diet exerted beneficial effects on MAFLD similar to those of exercise. Conversely, the overexpression of miR­212­3p abolished the ameliorative effects of exercise on MAFLD. Fibroblast growth factor 21 (FGF21) and chromodomain helicase DNA binding protein 1 (CHD1) were identified as target genes of miR­212­3p in lipid metabolism using bioinformatics analysis. Mechanistically, the inhibition of miR­212­3p mimicked the effects of exercise on lipid metabolism by regulating FGF21, but not CHD1. The exercise­related transcription factor, early growth response 1 (EGR1), was identified upstream of miR­212­3p through promoter motif analysis. EGR1 overexpression inhibited miR­212­3p expression. The overexpression of miR­212­3p abolished the effects of exercise on lipid metabolism by exogenously attenuating the transcriptional repression of EGR1. Moreover, the overexpression of miR­212­3p abolished the regulatory effects of EGR1 on FGF21. On the whole, the present study demonstrates that miR­212­3p plays a key role in the effects of exercise on MAFLD. The findings presented herein suggest a potential therapeutic effect of targeting miR­212­3p in MAFLD.


Asunto(s)
Terapia Genética , Lipogénesis , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Lipogénesis/genética , Hígado/metabolismo , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/terapia , Terapia Genética/métodos , Modelos Animales de Enfermedad , Ejercicio Físico , Condicionamiento Físico Animal
17.
Mar Drugs ; 22(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248651

RESUMEN

Dietary supplementation is proposed as a strategy to reduce the side effects of conventional chemotherapy for triple-negative breast cancer (TNBC). Chitosan oligosaccharides (COS), a functional carbohydrate, have been identified to potentially inhibit cancer cell proliferation. However, a detailed investigation is required to fully understand its exact influence, particularly in terms of COS composition. The antitumor activities of COS oligomers and its monomer of glucosamine, when combined with doxorubicin separately, were evaluated in MDA-MB-231 cells. Chitotriose was identified to have the most significant synergistic effect. Preincubation with chitotriose was observed to promote the entry of doxorubicin into the cell nuclei and induce morphological changes in the cells. Mechanism analysis at the transcriptional level revealed that the early growth response 1 (Egr1) gene was a key regulator in enhancing the suppressive effect. This gene was found to modulate the activity of its downstream gene, growth arrest, and DNA damage-inducible alpha (Gadd45a). The role of Egr1 was confirmed through a small interfering RNA test and function assay. These findings provide insight into the effect and underlying mechanism of chitotriose supplementation for TNBC therapy.


Asunto(s)
Células MDA-MB-231 , Neoplasias de la Mama Triple Negativas , Trisacáridos , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Regulación hacia Arriba , Doxorrubicina/farmacología
18.
Acta Neuropathol Commun ; 10(1): 180, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517890

RESUMEN

Antisense oligonucleotide (ASO) therapy for neurological disease has been successful in clinical settings and its potential has generated hope for Alzheimer's disease (AD). We previously described that ablating SNCA encoding for α-synuclein (αSyn) in a mouse model of AD was beneficial. Here, we sought to demonstrate whether transient reduction of αSyn expression using ASOSNCA could be therapeutic in a mouse model of AD. The efficacy of the ASOSNCA was measured via immunocytochemistry, RT-qPCR and western blotting. To assess spatial learning and memory, ASOSNCA or PBS-injected APP and non-transgenic (NTG) mice, and separate groups of SNCA-null mice, were tested on the Barnes circular maze. Hippocampal slice electrophysiology and transcriptomic profiling were used to explore synaptic function and differential gene expression between groups. Reduction of SNCA transcripts alleviated cognitive deficits in male transgenic animals, but surprisingly, not in females. To determine the functional cause of this differential effect, we assessed memory function in SNCA-null mice. Learning and memory were intact in male mice but impaired in female animals, revealing that the role of αSyn on cognitive function is sex-specific. Transcriptional analyses identified a differentially expressed gene network centered around EGR1, a central modulator of learning and memory, in the hippocampi of SNCA-null mice. Thus, these novel results demonstrate that the function of αSyn on memory differs between male and female brains.


Asunto(s)
Enfermedad de Alzheimer , Cognición , alfa-Sinucleína , Animales , Femenino , Masculino , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
19.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499191

RESUMEN

Atopic dermatitis (AD) is one of the most common inflammatory skin diseases accompanied by severe itching. ß-caryophyllene (BCP), which displays anti-inflammatory activity, is a natural agonist of cannabinoid receptor 2. However, the therapeutic effects of BCP on atopic dermatitis (AD) remain poorly understood. The current study aimed to evaluate the topical therapeutic efficacy of BCP in an AD-like mouse model. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that drives AD pathogenesis. This study also investigated the effect of BCP on the interleukin 4 (IL-4)-induced expression of TSLP in HaCaT keratinocytes. We found that the topical application of BCP alleviated AD-like skin inflammation and inhibited the infiltration of proinflammatory cells into skin lesions. Moreover, the topical application of BCP reduced EGR1 (Early Growth Response 1) and TSLP expression in AD-like skin lesions. We also found that BCP inhibited IL-4-induced TSLP expression by downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in HaCaT keratinocytes. These findings demonstrate that BCP ameliorates DNCB-induced AD-like skin lesions through the downregulation of the MAPK/EGR1/TSLP signaling axis. BCP may be applicable for developing topical therapeutic agents for chronic skin inflammatory diseases, such as AD.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno , Interleucina-4/metabolismo , Linfopoyetina del Estroma Tímico , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Citocinas/metabolismo , Queratinocitos/metabolismo , Piel/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo
20.
FASEB J ; 36(11): e22605, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250963

RESUMEN

Upon chronic damage to the liver, multiple cytokines stimulate hepatic stellate cells (HSCs), causing the alterations of gene expression profiles and thus leading to HSC activation, a key step in liver fibrogenesis. Activated HSCs are the dominant contributors to liver fibrosis. Bromodomain containing protein 4 (BrD4), an important epigenetic reader, was demonstrated to concentrate on hundreds of enhancers associated with genes involved in multiple profibrotic pathways, thereby directing HSC activation and the fibrotic responses. The present studies were designed to examine the effect of transforming growth factor beta-1 (TGFß1), the most potent pro-fibrotic cytokine, on BrD4 expression in HSCs and, if so, elucidated the underlying mechanisms in vitro and in vivo. The experiments employed the heterogeneous TGFß1 knockout (TGFß1+/- ) mice, gene knockdown in vivo, and a model of thioacetamide (TAA)-induced liver injury. The results revealed that TGFß1 enhanced BrD4 expression in HSCs, which was mediated, at least, by Smad3 signaling and early-immediate gene Egr1 (early growth response-1). TGFß1-induced Smad3 signaling increased Egr1 expression and promoted Egr1 binding to BrD4 promoter at a site around -111 bp, promoting BrD4 expression. Egr1 knockdown reduced BrD4 expression in HSCs in a mouse model of TAA-induced liver injury and lessened liver fibrosis. Double fluorescence staining demonstrated a strong increase in BrD4 expression in activated HSCs in fibrotic areas of the human livers, paralleling the upregulation of p-Smad3 and Egr1. This research suggested novel molecular events underlying the roles of the master pro-fibrotic cytokine TGFß1 in HSC activation and liver fibrogenesis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Proteína 1 de la Respuesta de Crecimiento Precoz , Células Estrelladas Hepáticas , Proteínas Nucleares , Factores de Transcripción , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Epigénesis Genética , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Proteínas Nucleares/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Tioacetamida/efectos adversos , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA