Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.562
Filtrar
1.
Crit Rev Toxicol ; : 1-51, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351770

RESUMEN

Herbicide safeners are agrochemicals added to herbicide formulations to protect crops from herbicide damage without reducing the effectiveness of the herbicide against weeds. While safeners are typically structurally similar to their co-formulated herbicides, they are classified as "inert" in the United States, meaning they are not held to the same regulatory standards as the herbicides. This review systematically examines the toxicity of safeners, which is important given their large-scale global use and potential for exposure to wildlife, livestock, and humans. A systematic review of peer-reviewed literature identified only seven studies examining safener toxicity. Regulatory toxicity data, compiled from the European Chemicals Agency (ECHA) database, included data for 9 of the 18 commercial safeners. Most safeners have low acute ecotoxicity and mammalian toxicity; however, chronic effects and the underlying mechanism are less clear. Benoxacor showed enantioselective metabolism and depletion by drug-metabolizing enzymes. In conclusion, despite the widespread use of safeners, significant knowledge gaps exist regarding their toxicity. More research is needed to fully characterize the potential risks of safeners to human health and the environment. Regulatory agencies should consider reclassifying safeners as active ingredients to ensure adequate toxicity testing and risk assessment.

2.
Chemosphere ; 364: 143298, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251162

RESUMEN

Drying-rewetting (DW) cycles can significantly influence soil properties and microbial community composition, leading to direct or indirect changes in arsenic (As) toxicity, which inturn affects soil ecological functions. Despite this, there has been insufficient focus on accurately evaluating As ecotoxicity and its impact on soil ecological function under DW conditions. This study seeks to address this gap by examining the effects of DW on As toxicity and the characteristics of soil ecological function, specifically from the perspective of enzyme-based functional diversity. Our results reveal that compared to constant moisture conditions, DW treatment significantly increased the toxicity of As on alkaline phosphatase and ß-glucosidase, with maximum inhibition rates observed at 46.29% and 21.54%, respectively. Conversely, for other tested enzymes including invertase, fluorescein diacetate hydrolase, and dehydrogenase, DW treatment decreased As toxicity, possibly be due to the different stability of these enzymes under varying soil moisture conditions. From an enzyme functional diversity perspective, DW treatment reduced the As toxicity, as evidenced by the reduced inhibition rates and a lower coefficient of variation. In conclusion, DW appears to enhance soil functional resilience against arsenic pollution. These findings contribute to a better understanding of changes in ecological functions in heavy metal-contaminated soils under dynamic environmental conditions, offering insights for improved monitoring and mitigation strategies for metalloids toxicity in natural environments.


Asunto(s)
Arsénico , Contaminantes del Suelo , Suelo , Arsénico/toxicidad , Contaminantes del Suelo/toxicidad , Suelo/química , Fosfatasa Alcalina/metabolismo , beta-Glucosidasa/metabolismo , Microbiología del Suelo , Enzimas/metabolismo
3.
Environ Sci Pollut Res Int ; 31(45): 56523-56535, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39266880

RESUMEN

Understanding the environmental impact of nanoparticle (NP) mixtures is essential to accurately assess the risk they represent for aquatic ecosystems. However, although the toxicity of individual NPs has been extensively studied, information regarding the toxicity of combined NPs is still comparatively rather scarce. Hence, this research aimed to investigate the individual and combined toxicity mechanisms of two widely consumed nanoparticles, zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs), using an in vitro model, the RTgill-W1 rainbow trout gill epithelial cell line. Sublethal concentrations of ZnO NPs (0.1 µg mL-1) and TiO2 (30 µg mL-1) and a lethal concentration of ZnO NPs causing 10% mortality (EC10, 3 µg mL-1) were selected based on cytotoxicity assays. Cells were then exposed to the NPs at the selected concentrations alone and to their combination. Cytotoxicity assays, oxidative stress markers, and targeted gene expression analyses were employed to assess the NP cellular toxicity mechanisms and their effects on the gill cells. The cytotoxicity of the mixture was identical to the one of ZnO NPs alone. Enzymatic and gene expression (nrf2, gpx, sod) analyses suggest that none of the tested conditions induced a strong redox imbalance. Metal detoxification mechanisms (mtb) and zinc transportation (znt1) were affected only in cells exposed to ZnO NPs, while tight junction proteins (zo1 and cldn1), and apoptosis protein p53 were overexpressed only in cells exposed to the mixture. Osmoregulation (Na + /K + ATPase gene expression) was not affected by the tested conditions. The overall results suggest that the toxic effects of ZnO and TiO2 NPs in the mixture were significantly enhanced and could result in the disruption of the gill epithelium integrity. This study provides new insights into the combined effects of commonly used nanoparticles, emphasizing the importance of further investigating how their toxicity may be influenced in mixtures.


Asunto(s)
Branquias , Oncorhynchus mykiss , Titanio , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Titanio/toxicidad , Branquias/efectos de los fármacos , Línea Celular , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Technol ; 58(39): 17454-17463, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39292649

RESUMEN

Offshore oil platforms discharge enormous volumes of produced water that contain mixtures of petrochemicals and production chemicals. It is crucial to avoid the discharge of particularly those chemicals that are persistent in the marine environment. This study aims to (1) develop a biodegradation testing approach for discharged chemicals by native marine microorganism, (2) determine how dilution affects biodegradation, and (3) determine biodegradation kinetics for many discharged chemicals at low and noninhibitory concentrations. Produced water from an offshore oil platform was diluted in the ratio of 1:20, 1:60, and 1:200 in seawater from the same location and incubated for 60 days at 10 °C. Automated solid-phase microextraction GC-MS was used as a sensitive analytical technique, and chemical-specific primary degradation was determined based on peak area ratios between biotic test systems and abiotic controls. Biodegradation was inhibited at lower dilutions, consistent with ecotoxicity tests. Biodegradation kinetics were determined at the highest dilution for 139 chemicals (43 tentatively identified), and 6 chemicals were found persistent (half-life >60 days). Nontargeted analysis by liquid chromatography-high-resolution MS was demonstrated as a proof-of-principle for a comprehensive assessment. Biodegradation testing of chemicals in discharges provides the possibility to assess hundreds of chemicals at once and find the persistent ones.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua , Cinética , Agua de Mar/química
5.
J Toxicol Environ Health A ; 87(23): 973-987, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39298181

RESUMEN

Pyraclostrobin-based fungicides play an effective role in controlling fungal diseases and are extensively used in agriculture. However, there is concern regarding the potential adverse effects attributed to exposure to these fungicides on non-target organisms and consequent influence exerted on ecosystem functioning. Thus, it is essential to conduct studies with model organisms to determine the impacts of these fungicides on different groups of living organisms. The aim of this study was to examine the ecotoxicity associated with exposure to commercial fungicides containing pyraclostrobin. The focus of the analysis involved germination and initial development of seedlings of 4 plant models (Lactuca sativa, Raphanus sativus, Pennisetum glaucum and Triticum aestivum), in addition to determining the population growth rate and total carbohydrate content in microalga Raphidocelis subcapitata. The fungicide pyraclostrobin adversely influenced growth and development of the tested plants, indicating a toxic effect. The fungicide exerted a significant impact on the initial development of seedlings of all model species examined with T. aestivum plants displaying the greatest susceptibility to pyraclostrobin. Plants of this species exhibited inhibitory effects on both aerial parts and roots when treated with a concentration of 4.75 mg/L pyraclostrobin. In addition, the green microalga R. subcapitata was also significantly affected by the fungicide, especially at relatively high concentrations as evidenced by a reduction in total carbohydrate content. This commercial fungicide demonstrated potential phytotoxicity for the tested plant models and was also considered toxic to the selected microalgae, indicating an ecotoxic effect that might affect other organisms in aquatic environments.


Asunto(s)
Fungicidas Industriales , Microalgas , Estrobilurinas , Fungicidas Industriales/toxicidad , Estrobilurinas/toxicidad , Microalgas/efectos de los fármacos , Carbamatos/toxicidad , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Germinación/efectos de los fármacos , Pirazoles/toxicidad , Plantas/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo
6.
Sci Total Environ ; 954: 176334, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39317251

RESUMEN

Fipronil (FIP) is a broad-spectrum and highly efficient insecticide used against several arthropod pests, such as parasitic mites and insect pests affecting both animals and plants. Given its several benefits, FIP is widely used in the agricultural and veterinary medicine fields, but its indiscriminate use can have ecotoxic effects on non-target species. Thus, the current study aimed to summarise and critically analyse FIP's ecotoxicity in aquatic animals. Data referring to bibliometric parameters (publication year and geographical distribution), experimental conditions (field and laboratory, FIP type, animal class, species, habitat, and exposure conditions), and biomarkers (oxidative stress, DNA damage, neurotoxicity, and morphological changes) were summarised and critically analysed. Ecotoxicological studies were mainly conducted with insects, crustaceans, molluscs, and fish. Exposure to pure FIP or FIP-based commercial formulation can induce mortality and have sublethal effects on non-target organisms, such as increased reactive oxygen species (ROS), oxidative damage, genotoxicity (DNA damage), neurotoxicity, and morphological changes. The herein reviewed data have evidenced high median lethal FIP concentration (LC50) in vertebrates in comparison to invertebrates. The current findings confirmed that FIP can have several effects on aquatic organisms, besides suggesting potential ecotoxicological risks posed by this insecticide.

7.
Ecotoxicology ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264549

RESUMEN

Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.

8.
3 Biotech ; 14(10): 220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39247458

RESUMEN

Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.

9.
Aquat Toxicol ; 275: 107074, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241466

RESUMEN

Evidence grows that standard toxicity testing might underestimate the environmental risk of neurotoxic insecticides. Behavioural endpoints such as locomotion and mobility have been suggested as sensitive and ecologically relevant additions to the standard tested endpoints. Possible interactive effects of chemicals and additional stressors are typically overlooked in standardised testing. Therefore, we aimed to investigate how concurrent exposure to environmental stressors (increased temperature and predation cues) and a nicotinic acetylcholine receptor (nAChR)-modulating insecticide ('sulfoxaflor') impact Chironomus riparius across a range of conventional and non-conventional endpoints. We used a multifactorial experimental design encompassing three stressors, sulfoxaflor (2.0-110 µg/L), predation risk (presence/absence of predatory cues), and elevated temperature (20 °C and 23 °C), yielding a total of 24 distinct treatment conditions. Additional stressors did not change the sensitivity of C. riparius to sulfoxaflor. To assess potential additive effects, we applied an Independent Action (IA) model to predict the impact on eight endpoints, including conventional endpoints (growth, survival, total emergence, and emergence time) and less conventional endpoints (the size of the adults, swimming abilities and exploration behaviour). For the conventional endpoints, observed effects were either lower than expected or well-predicted by the IA model. In contrast, we found greater than predicted effects of predation cues and temperature in combination with sulfoxaflor on adult size, larval exploration, and swimming behaviour. However, in contrast to the non-conventional endpoints, no conventional endpoints detected interactive effects of the neurotoxic insecticide and the environmental stressors. Acknowledging these interactions, increasing ecological context of ecotoxicological test systems may, therefore, advance environmental risk analysis and interpretation as the safe environmental concentrations of neurotoxic insecticides depend on the context of both the test organism and its environment.


Asunto(s)
Chironomidae , Insecticidas , Piridinas , Compuestos de Azufre , Contaminantes Químicos del Agua , Chironomidae/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Piridinas/toxicidad , Compuestos de Azufre/toxicidad , Insecticidas/toxicidad , Pruebas de Toxicidad , Larva/efectos de los fármacos , Temperatura
10.
Waste Manag ; 189: 421-426, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241560

RESUMEN

The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 'ecotoxic'. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50-70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50-70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value.


Asunto(s)
Ceniza del Carbón , Cobre , Incineración , Residuos Sólidos , Zinc , Ceniza del Carbón/química , Ceniza del Carbón/análisis , Cobre/análisis , Zinc/análisis , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Alemania , Espectroscopía de Absorción de Rayos X
11.
Ecotoxicology ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259421

RESUMEN

Sodium dodecyl sulfate (SDS) is a surfactant used and recommended by regulatory agencies as a reference substance in ecotoxicological analyzes. In this work, acute toxicity assays were performed with adults and embryos of the freshwater snail Biomphalaria glabrata, an endemic organism with environmental and public health importance, to evaluate the effects of the surfactant and establish a sensitivity control chart. The organisms were exposed to SDS for 24 h to a range of concentrations, as well as a control group. Six assays were performed to establish the control chart for adults (with a median LC50 of 36.87 mg L-1) and differential sensitivity was observed at each embryonic stage (EC50 = blastulae 33.03, gastrulae 35.03, trochophore 39.71 and veliger 72.55 mg L-1). The following behavioral responses were observed in exposed adult snails: release of hemolymph and mucus, body outside the shell, and penile overexposure. Embryos at the blastulae and gastrulae stages were more sensitive, and teratogenic effects were accentuated in the trochophore stage. The difference in results obtained between adults and embryos underscore the importance of carrying out analyzes at different developmental stages. The serial assays established with SDS for B. glabrata demonstrated efficiency and constancy conditions in the assays with good laboratory practice standards. The wide distribution of Biomphalaria species in several countries, their easy maintenance and cultivation in the laboratory, in addition to ecological importance, make them economical alternatives for ecotoxicological assays.

12.
Sci Total Environ ; 954: 176330, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293768

RESUMEN

Consuming the meat of some marine turtles can lead to a specific type of seafood poisoning known as chelonitoxism. A recent poisoning event (March 2024) on the Tanzanian island Pemba, resulting in the death of 9 people and hospitalization of 78 others, underscores the need to obtain an up to date overview and understanding of chelonitoxism. Here, we document a global overview of poisoning incidents resulting from the consumption of sea turtle flesh worldwide. All events combined involved over 2400 victims and 420 fatalities. Incidents were predominantly reported in remote regions (often islands) across the Indo-Pacific region. Reported health effects of consuming poisonous sea turtles include epigastric pain, diarrhea, vomiting, a burning mouth and throat sensation, and dehydration. In addition, ulcerative oeso-gastro-duodenal lesions, which occasionally have resulted in hospitalization and death, have been reported. Lyngbyatoxins have been suggested as (one of) the causative agents, originating from the cyanobacterium Moorena producens, growing epiphytically on the seagrass and seaweed consumed by green turtles. However, due to the limited evidence of their involvement, the actual etiology of chelonitoxism remains unresolved and other compounds may be responsible. The data outlined in this review offer valuable insights to both regulatory bodies and the general public regarding the potential risks linked to consuming sea turtles.

13.
Chemosphere ; 365: 143363, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299464

RESUMEN

Pesticide application can result in residue drift deposition in off-field areas, which can be harmful to non-target organisms inhabiting adjacent off-field environments. In order to comprehend the impact of pesticide drift deposition on off-field non-target organisms, an integrated modeling approach was incorporated into the life cycle analysis perspective for the assessment of their exposure to pesticide residues and the characterization of their human toxicity and ecotoxicity potentials. The modeling assumption comprises four modeling scenarios: children & cattle & sensitive crops (tomatoes) based on exposure assessment, and the continent-scale human health toxicity & ecotoxicity under a life cycle analysis perspective. The simulation results for the nearby off-field exposure scenario revealed that pesticide dissipation kinetics in environments and drift deposition type were two important factors influencing non-target organisms' exposure to pesticide residues deposited in off-field environments. The continental scenario simulated via USEtox revealed that considering off-field drift deposition resulted in lower simulated human toxicity potentials of pesticides when compared to simulation results that did not consider drift deposition, given that pesticide residues remaining within the treated field contributed the most to overall human exposure. Taking drift deposition into account, on the other hand, could result in higher or lower simulated ecotoxicity potentials of pesticides than not taking drift deposition in off-field areas into account, depending on the physicochemical properties of pesticides. The proposed modeling approach, which is adaptable to drift deposition types and chemical species, can aid in investigating the off-field impacts of pesticide residues. Future research will incorporate spatiotemporal factors to characterize region-specific drift deposition functions and pesticide fate in off-field environments to conduct site-specific impact assessments.

14.
Sci Total Environ ; : 176018, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278489

RESUMEN

Coral reefs are at risk of bleaching due to various environmental and anthropogenic stressors such as global warming and chemical pollutants. However, there is little understanding of stressor-specific mechanisms that cause coral bleaching. Therefore, conducting accurate ecotoxicological risk assessments and deciphering modes of action of potentially deleterious ultraviolet (UV) filters (sunscreen compounds) are crucial issues. In this study, we evaluated the toxicity and bleaching effect of benzophenone-3 (BP-3), which is widely used in sunscreen products, on the reef-building coral Acropora tenuis. Furthermore, to understand differences in UV filter- and temperature-induced adverse effects, a comparative ecotoxicogenomic approach using RNA-seq was integrated into a toxicity test to clarify differences in gene expression changes induced by BP-3 and heat stress (31 °C). The lethal concentration 50 % (LC50) was calculated as 3.9 mg/L, indicating that the aquatic environmental risk on corals posed by BP-3 was low based on the risk assessment in this study. Differentially expressed genes related to oxidative stress and extracellular matrix organization were involved in coral responses to both BP-3 and heat stress, but their patterns differed. Whereas immune and heat-shock responses were activated in response to heat stress, activation of a drug metabolism pathway and several signal transduction pathways were identified in BP-3 treatment groups. Our study enhances understanding of stress responses in corals induced by UV filters and thermal stress. Using potential gene markers identified in this study for eco-epidemiological surveys of stressed corals, we urgently need to develop effective countermeasures.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39294537

RESUMEN

The Saimaa ringed seal (Pusa hispida saimensis) is a subspecies of ringed seal, landlocked in Lake Saimaa, Finland. The small population of less than 500 seals is facing many human-induced threats, including chemical contaminants. Mercury, in particular, has previously been suggested to be one of the chemicals affecting the viability of this endangered population. We analysed mercury concentrations from placentas and lanugo pup tissues (blubber, brain, kidney, liver, and muscle) to determine current prenatal exposure levels. These pups were found dead in or near birth lairs and were less than 3 months old. Additionally, we used threshold values available in the literature to estimate the potential mercury toxicity to the Saimaa ringed seal. We also determined selenium concentrations for its potential to alleviate the adverse effects of mercury. We further supplemented our study with brain samples collected from various seal age classes. These seals were found dead by either natural causes or by being caught in gillnets. The analysed chemicals were present in all tissues. For lanugo pups, mercury concentrations were the highest in the kidney and liver, whereas the highest selenium to mercury molar ratio was observed in placentas. The toxicity evaluation suggested that, in severe cases, mercury may cause adverse effects in lanugo and older pups. In these cases, the selenium concentrations were low and selenium to mercury ratio was below 1:1 threshold ratio and thus unlikely to provide adequate protection from the adverse effects of mercury. Furthermore, adverse effects are more likely to occur in adult seals, as mercury bioaccumulates, leading to higher concentrations in older individuals. Placental mercury concentrations correlated to those in the livers and muscle tissues of lanugo pups. This, together with the fact that placentas can be collected non-invasively and in good condition, provides a potential novel method for biomonitoring mercury exposure in Saimaa ringed seals.

16.
Sci Total Environ ; : 176572, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343410

RESUMEN

Free cyanide is considered to be the most toxic form of cyanides to aquatic life. Due to its broad range of uses and subsequent potential widespread emissions to surface water, the environmental effects of free cyanide have been extensively researched. Regulatory bodies have proposed water quality standards for free cyanide, but these are regularly debated and implementation has been inconsistent due to monitoring challenges. The aim of the present study was therefore to derive new environmental quality standards (EQS) for free cyanide according to the Water Framework Directive (WFD). Ecotoxicity data from previous derivations and an additional literature search were gathered and individually (re) evaluated on reliability. The pooled acute ecotoxicity dataset consisted of reliable results for 35 species, distributed over 8 taxonomic groups. The pooled chronic ecotoxicity dataset consisted of results for 13 species, distributed over 7 taxonomic groups. WFD criteria for deriving a species sensitivity distribution (SSD) were met, if censored data points were included. Using the R-package ETX 3.0, an SSD including censored data was constructed and acute and chronic HC5 values of 17 and 0.66 µg/L, respectively, were derived. Comparisons were made with alternative SSDs constructed by transforming or discarding the censored data. Applying a default assessment factor (AF) of 10 to the HC5 from the acute SSD resulted in a MAC-EQS of 1.7 µg CN-/L for freshwater and marine water. Careful consideration was given to addressing the uncertainty around the chronic HC5 value for the selection of an AF of 3, resulting in an AA-EQS of 0.22 µg CN-/L for freshwater and 0.044 µg CN-/L for marine water by applying an additional AF of 5. It is concluded that the current environmental quality standards for free cyanide are the first to be derived according to the WFD guidance, using only reliable data and including censored values.

17.
Toxicol Rep ; 13: 101696, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39104368

RESUMEN

Boron nanoparticles have numerous medical, industrial, and environmental applications as potential nanomaterials. Given the inevitable release of these particles in aquatic environments, they can combine with other pollutants like pharmaceuticals. Therefore, it is necessary to investigate their combined detrimental effects on freshwater biota. This study examined the joint impacts of Boron nitride nanoparticles (BNNPs) and Diclofenac (DCF) on freshwater microalgae Scenedesmus obliquus. Three different concentrations of BNNPs (0.1, 1, and 10 mg L-1) were mixed with 1 mg L-1 of DCF and were treated with algal cells, and biochemical analyses were performed. A concentration-dependent decrease in algal cell viability was observed after a 72-h interaction period with BNNPs and their binary combinations. The maximum toxic effects were observed for the highest combination of BNNPs + DCF, i.e., 10 mg L-1 BNNPs + 1 mg L-1 DCF. Similarly, an increase in the oxidative stress parameters and antioxidant enzyme activity was observed, which correlated directly to the decline in cell viability. The algal cells also showed reduced photosynthetic efficiency and electron transfer rate upon interaction with BNNPs. The results of this research emphasize the importance of considering the negative consequences of emerging pollutants and their combinations with other pollutants, BNNPs, and DCF as part of a thorough evaluation of ecotoxicity in freshwater algal species.

18.
J Hazard Mater ; 478: 135396, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121736

RESUMEN

Quaternary ammonium compounds (QACs) are widely detected in the aquatic environment due to their extensive use in a wide array of antibacterial products during the pandemic. In the current study, UV/monochloramine (UV/NH2Cl) was used to degrade three typical QACs, namely benzalkonium compounds (BACs), dialkyl dimethyl ammonium compounds (DADMACs), and alkyl trimethyl ammonium compounds (ATMACs). This process achieved high efficiency in removing BACs from water samples. The transformation products of QACs treated with UV/NH2Cl were identified and characterized using a high-resolution mass spectrometer, and transformation pathways were proposed. The formation of N-nitroso-N-methyl-N-alkylamines (NMAs) and N-nitrosodimethylamine (NDMA) were observed during QAC degradation. The molar formation yield of NDMA from C12-BAC was 0.04 %, while yields of NMAs reached 1.05 %. The ecotoxicity of NMAs derived from QACs was predicted using ECOSAR software. The increased toxicity could be attributed to the formation of NMAs with longer alkyl chains; these NMAs, exhibited a one order of magnitude increase in toxicity compared to their parent QACs. This study provides evidence that QACs are the specific and significant precursors of NMAs. Greater attention should be given to NMA formation and its potential threat to the ecosystem, including humans.


Asunto(s)
Cloraminas , Compuestos de Amonio Cuaternario , Rayos Ultravioleta , Contaminantes Químicos del Agua , Compuestos de Amonio Cuaternario/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/análisis , Cinética , Cloraminas/química , Dimetilnitrosamina/química , Nitrosaminas/química , Nitrosaminas/análisis
19.
Water Res ; 265: 122301, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173356

RESUMEN

Methylisothiazolinone (MIT) and Benzisothiazolinone (BIT) are two widely used non-oxidizing biocides of isothiazolinones. Their production and usage volume have sharply increased since the pandemic of COVID-19, inevitably leading to more release into water environment. However, their photochemical behaviors in water environment are still unclear. Therefore, this study investigated photodegradation properties of MIT and BIT in natural water under simulated sunlight. The results demonstrated that direct photolysis was mainly responsible for their photodegradation which occurred through their excited singlet states rather than triplet states. The quantum yields of MIT and BIT photodegradation were 11 - 13.6 × 10-4 and 2.43 - 5.79 × 10-4, respectively. pH had almost no effect on the photodegradation of MIT, while the photodegradation of BIT was significantly promoted under alkaline condition due to abundance of BIT in its deprotonated form (BIT-N-). Cl-, NO3- and dissolved organic matter (DOM) in natural water inhibited the photodegradation of both MIT and BIT, with the light screening effect of DOM being the most significantly inhibitory factor. The addition of other isothiazolinones, which possibly coexisted with MIT and BIT in actual condition, slightly inhibited the photodegradation of MIT and BIT. The estimated half-life under natural sunlight at a 30°N latitude was estimated to be approximately 1.1 days. The photodegradation pathways of MIT and BIT are similar, primarily initiated from the ring-opening at the N-S bond, with Frontier electron densities (FED) calculations suggesting the likelihood of oxidation and ·OH addition reactions at the O, N, and S sites. While the photodegradation products exhibited significantly reduced acute toxicity compared to their parent compounds, they nonetheless posed substantial chronic toxicity. These insights are vital for assessing the ecological impacts of MIT and BIT in aquatic environments.


Asunto(s)
Fotólisis , Tiazoles , Contaminantes Químicos del Agua , Tiazoles/química , Contaminantes Químicos del Agua/química , Luz Solar
20.
Chemosphere ; 364: 143162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178966

RESUMEN

Cultural eutrophication from excessive human-related nutrient (phosphorus, P, and nitrogen, N) inputs is a major concern for water quality. Because P historically was regarded as the critical nutrient in controlling noxious algal/plant growth, P became the focus of "capturing" techniques, with emphasis on removal performance rather than environmental impacts. Here, we synthesize a literature review of known environmental effects linked to use of metal-cation-based P-capturing materials under eutrophic conditions in freshwaters. P-capturing materials with functional cations based on aluminum (Al), calcium (Ca), iron (Fe), lanthanum (La), and magnesium (Mg) were reviewed in terms of their ecotoxicity, persistence, and bioaccumulation-standard criteria used to evaluate environmental risks of chemical substances. We found very few published studies on environmental impacts of metal-cation-based P-capturing materials under eutrophic conditions. Available reports indicated that environmental effects vary depending on the selected material, dose, target organism(s), and experimental conditions. The Al-based materials had the potential to negatively impact various biota; several Fe-based materials caused various levels of toxicity in a limited group of aquatic organisms; La-based materials can bioaccumulate and some were linked to various harmful effects on biota; and Mg-based materials also adversely affected various organisms. The limited number of published studies underscores the need for further research to characterize the environmental impacts of these materials. Results can be used to guide future work and can assist resource managers in sustainable management strategies. Among various research needs, future assessments should assess the impacts of chronic exposures on sensitive species under realistic field conditions in eutrophic waters.


Asunto(s)
Cationes , Metales , Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Fósforo/química , Metales/análisis , Contaminantes Químicos del Agua/análisis , Eutrofización , Agua Dulce/química , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA