Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Adv Sci (Weinh) ; : e2404679, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120556

RESUMEN

Flexible electrochromic devices (FECDs) are widely explored for diverse applications including wearable electronics, camouflage, and smart windows. However, the manufacturing process of patterned FECDs remains complex, costly, and non-customizable. To address this challenge, a strategy is proposed to prepare integrated FECDs via multi-material direct writing 3D printing. By designing novel viologen/polyvinyl alcohol (PVA) hydrogel inks and systematically evaluating the printability of various inks, seamless interface integration can be achieved, enabling streamlined manufacturing of patterned FECDs with continuous production capabilities. The resultant 3D-printed FECDs exhibit excellent electrochromic and mechanical properties, including high optical contrast (up to 54% at 360 nm), nice cycling stability (less than 5% electroactivity reduction after 10 000 s), and mechanical stability (less than 19% optimal contrast decrease after 5000 cycles of bending). The potential applications of these 3D-printed hydrogel-based FECDs are further demonstrated in wearable electronics, camouflage, and smart windows.

2.
Adv Sci (Weinh) ; : e2405444, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133630

RESUMEN

Cephalopods can change their skin color by using high-speed electron transduction among receptors, neural networks, and pigmentary effectors. However, it remains challenging to realize a neuroelectrical transmission system like that found in cephalopods, where electrons/ions transmit on nanoscale, which is crucial for fast adaptive electrochromic tuning. Inspired by that, hereby an ideal, rapidly responsive, and multicolor electrochromic biomimetic skin is introduced. Specifically, the biomimetic skin comprises W18O49 nanowires (NWs) that are either colorless or blue, Au nanoparticles@polyaniline (Au NPs@PANI) ranging from green to pink, and a flexible conductive substrate. As the applied voltage changes from 0.4 V to -0.7 V and back to 0 V, the color of the biomimetic skin transforms from green to blue and ultimately to pink. This color change is attributed to the electrically induced redox reaction of Au NPs@PANI and W18O49 NWs, triggered by the transfer of electrons and ions. Furthermore, the high versatility and adaptability of electrical stimulus enable the creation of a highly interactive electrochromic biomimetic skin system through the integration of sensitive acoustic sensors, providing a perfect environment-responsive platform. This work provides a biomimetic multicolor electrochromic skin that depends on electron/ion transfer on nanoscale, expands potential uses for camouflage skin.

3.
Water Res ; 263: 122178, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096806

RESUMEN

Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.


Asunto(s)
Membranas Artificiales , Plata , Titanio , Titanio/química , Plata/química , Catálisis , Luz , Escherichia coli/efectos de los fármacos , Diálisis , Aniones , Nanopartículas del Metal/química
4.
ACS Appl Mater Interfaces ; 16(32): 42481-42490, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093557

RESUMEN

As one of the least energy-efficient components in buildings, transparent building envelopes are responsible for approximately 60% of the total energy losses. Although controlling solar transmittance through electrochromic modulation is an effective method for temperature management in these structures, a dynamic control strategy for solar light on curved transparent building envelopes is still lacking. In this study, we introduce a dual-mode flexible electrochromic device based on reversible silver deposition for curved transparent building envelopes. The device operates by reversibly depositing and dissolving silver on a flexible polyethylene terephthalate-indium tin oxide (PET-ITO) substrate, controlled through the application and removal of pulsed voltage. This mechanism enables rapid switching between radiative cooling and solar heating modes, leading to modulation of solar reflectance from 89.1% to 15.7% and solar transmittance from 0.02% to 72.9%. Under approximately 700 W/m2 of solar irradiance, the device achieves an average temperature reduction of 1.6 °C (with a maximum reduction of 4.3 °C) compared to ambient temperature in radiative cooling mode. In solar heating mode, the device achieves an average temperature increase of 17.1 °C (with a maximum increment of 23.7 °C) compared to ambient temperature. Simulation results show that the dual-mode flexible electrochromic device could offer all-season thermal regulation for curved transparent building envelopes and achieve a maximum of over 50% annual HVAC energy savings.

5.
ACS Appl Mater Interfaces ; 16(32): 42502-42512, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096487

RESUMEN

Vanadium pentoxide (V2O5) is considered a promising material for electrochromic supercapacitors due to its rich color transitions and excellent electrochemical capacity. However, V2O5 exhibits low electrical conductivity, and its volume changes dramatically during charge-discharge cycles, leading to structural collapse and poor long-term cyclability. These issues have hindered the development and application of V2O5. In this study, copper vanadium oxide yolk-shell microspheres (CVO) were synthesized through a one-step solvent heat treatment with an annealing process. With the doping of copper element, the capacitance, conductivity, and cyclic stability of CVO microspheres were significantly enhanced. Subsequently, the sphere-wire network structure was formed by blending Na2V6O16·3H2O nanowires (NVO), resulting in the formation of CVO/NVO composites. The three-dimensional sphere-wire network efficiently facilitates the acquisition of additional redox sites and strengthens the material-to-substrate bonding. Under the combined influence of these favorable factors, CVO/NVO achieved a high specific capacitance of 39.2 mF cm-2, with a capacitance retention of 84% after 7500 cycles at a current density of 0.7 mA cm-2. The fully inorganic solid-state electrochromic supercapacitor (ECSC), assembled on the basis of CVO/NVO, demonstrates a vivid and clearly distinguishable color change (ΔE* = 37). Even more impressive is the energy storage capacity (18.4 mF·cm-2) and the cycling stability (up to 89% retention after 10,000 cycles) exhibited by the devices. These key performances are superior to those of most of the previously reported V2O5-based ECSCs, opening a promising avenue for the development of V2O5-based electrochromic energy storage devices.

6.
Biochim Biophys Acta Bioenerg ; 1865(4): 149502, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127329

RESUMEN

Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.

7.
J Colloid Interface Sci ; 676: 670-679, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053414

RESUMEN

Multicolour electrochromic materials have been considered as a promising alternative to achieve dynamic full-colour tuning towards next-generation electronic display technology. However, the development of electrochromics with wide colour gamut and subtle multicolour tunability still remains challenging due to inflexible energy level structures in intrinsic active materials. Herein, the electrochromic π-conjugated polymers with rich and subtle colour tunability were designed and developed based on a fine adjustment on the energy level structures. The chromatic transition covers almost full-colour gamut, and each colour scheme has a rich variety of categories stemming from versatile hues, chromas and lightnesses. Moreover, the multicolour π-conjugated polymers also demonstrate superior overall electrochromic performance, including fast switching (∼1.0 s), high colouration efficiency (160.4 cm2 C-1@550 nm) and good reversibility (over 90 % retention after 10,000 cycles). As a proof of concept, ultrathin and flexible prototype devices are developed by utilizing the multicolour π-conjugated polymers as electrochromic active layer, exhibiting a wide colour gamut and highly saturated multicolour tunability. The design principles proposed in this work may also be applicable to diverse optoelectronic applications.

8.
ACS Appl Mater Interfaces ; 16(30): 40199-40209, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39029113

RESUMEN

Silver nanowires (NWs) (AgNWs) have emerged as the most promising conductive materials in flexible optoelectronic devices owing to their excellent photoelectric properties and mechanical flexibility. It is widely acknowledged that the practical application of AgNW networks faces challenges, such as high surface roughness, poor substrate adhesion, and limited stability. Encapsulating AgNW networks with graphene has been recognized as a viable strategy to tackle these issues. However, conventional methods like self-assembly reduction-oxidation or chemical vapor deposition often yield graphene protective layers with inherent defects. Here, we propose a novel one-step hot-pressing method containing ethanol solution that combines the spontaneous transfer and encapsulation process of rGO films onto the surface of the AgNWs network, enabling the preparation of flexible rGO/AgNWs/PET (reduced graphene oxide/silver NWs/polyethylene terephthalate) electrodes. The composite electrode exhibits outstanding photoelectric properties (T ≈ 88%, R ≈ 6 Ω sq-1) and possesses a smooth surface, primarily attributed to the capillary force generated by ethanol evaporation, ensuring the integrity of the rGO delamination process on the original substrate. The capillary force simultaneously promotes the tight encapsulation of rGO and AgNWs, as well as the welding of the AgNWs junction, thereby enhancing the mechanical stability (20,000 bending cycles and 100 cycles of taping tests), thermal stability (∼30 °C and ∼25% humidity for 150 days), and environmental adaptability (100 days of chemical attack) of the electrode. The electrode's practical feasibility has been validated by its exceptional flexibility and cycle stability (95 and 98% retention after 5000 bending cycles and 12,000 s long-term cycles) in flexible electrochromic devices.

9.
ACS Appl Mater Interfaces ; 16(30): 39539-39550, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031064

RESUMEN

Aqueous electrochromic batteries (ECBs) have recently garnered significant attention within the realm of renewable rechargeable technology due to their potential applicability in diverse multifunctional devices featuring visible-level indicator batteries. However, there exists an imperative to comprehend the underlying structural factors that contribute to achieving an elevated electrochemical performance. In this context, we have synthesized and compared WO3·H2O (HWO) specifically for heightened ECB application as against the performance of a standard anhydrous WO3 (AWO). To unravel the underlying cause, a density functional theory (DFT) investigation is carried out, disclosing a structural deformation of HWO, unlike AWO, due to Jahn-Teller distortion induced by the presence of interlayer water. It results in a fully compatible HWO ion host to devise a zinc-ion aqueous electrolyte electrochromic battery, exhibiting superior redox reactivity, optical modulation (50%), capacity (200 mAh/m2), and cyclic stability. To glean insights into the dynamic structural alterations during the intercalation and deintercalation processes of Zn2+, ex situ X-ray diffraction and Raman spectroscopic studies are carried out. These investigations culminate in the determination that HWO films are better suited for the application than their AWO counterparts. This finding holds promise for advancing the applications of ECBs and represents a significant step forward in this field.

10.
Chemistry ; 30(42): e202401417, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38970532

RESUMEN

An asymmetric mixed valence fluorophore with two different electron rich termini was investigated as a dual-role active material for electrochromism and electrofluorochromism. The fluorescence quantum yield (Φfl) and emission wavelength of the fluorophore were dependent on solvent polarity. The quantum yield of the material in an electrolyte gel, on a glass substrate and in a device was 40 %, 20 % and 13 % respectively. The fluorophore further underwent two near-simultaneous electrochemical oxidations. The first oxidation resulted in a 1000 nm red shift in the absorption to broadly absorb in the NIR, corresponding to the intervalence charge transfer (IVCT). Whereas the second oxidation led to a perceived green color at 715 nm with the extinction of the NIR absorbing IVCT. Owing to the dissymmetry of the fluorophore along with its two unique oxidation sites, the IVCT gives rise to a mixed valence transfer charge (MVCT). The coloration efficiency of the fluorophore in both solution and a device was 1433 and 200 cm2 C-1, respectively. The fluorescence intensity could be reversibly modulated electrochemically. The photoemission intensity of the fluorophore was modulated with applied potential in an operating electrochromic/electrofluorochromic device. Both the dual electrochromic and the electrofluorochromic behavior of the fluorophore were demonstrated.

11.
Adv Sci (Weinh) ; : e2400979, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994880

RESUMEN

Reconstructing the visible spectra of real objects is critical to the spectral camouflage from emerging spectral imaging. Electrochromic materials exhibit unique superiority for this goal due to their subtractive color-mixing model and structural diversity. Herein, a simulation model is proposed and a method is developed to fabricate electrochromic devices for dynamically reproducing the visible spectrum of the natural leaf. Over 20 kinds of pH-dependent leuco dyes have been synthesized/prepared through molecular engineering and offered available spectra/bands to reconstruct the spectrum of the natural leaf. More importantly, the spectral variance between the device and leaf is optimized from an initial 98.9 to an ideal 10.3 through the simulation model, which means, the similarity increased nearly nine-fold. As a promising spectrum reconstruction approach, it will promote the development of smart photoelectric materials in adaptive camouflage, spectral display, high-end encryption, and anti-counterfeiting.

12.
ACS Appl Mater Interfaces ; 16(28): 36942-36952, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958414

RESUMEN

MnO2/polypyrrole (PPy) composite films were deposited on fluorine-doped tin oxide (FTO) conductive glasses by a two-step wet-chemical method, including electrochemical deposition and chemical bath deposition (CBD). The porous MnO2 films were first grown on FTO glasses by an electrodeposition method. Second, polypyrrole nanoparticles were polymerized by the oxidation-reduction reaction between MnO2 and pyrrole, using the presynthesized MnO2 as the skeleton. Then, MnO2/PPy composite films with coral-like structures were obtained. The electrochemical and electrochromic (EC) properties of the prepared films were investigated. The results show that, compared to the single MnO2 or PPy film, the MnO2/PPy composite film has a larger optical modulation (67.3% at a wavelength of 900 nm), faster response times (4 s for coloration and 3 s for bleaching), and a higher coloration efficiency (218.16 cm2·C-1). The high coloration efficiency attests to the exceptional performance of the composite film in converting electrical signals into vivid color changes. The electrochemical stability test results show that the composite film maintains a stable EC performance after 200 coloration/bleaching cycles. The coral-like structures of the composite film are responsible for the better EC properties.

13.
Chempluschem ; : e202400281, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979692

RESUMEN

Tungsten oxide-mica composites were prepared by adding different amounts of commercial mica (alumina silicate) in order to provide high luster to electrochromic coatings. The mechanical stability was sustained for up to 50 weight % mica for application in aqueous medium. The electrochemical properties, coloration, and luster were investigated. The luster of the composites increased roughly linearly with increased mica content and was retained after coloration. The addition of 10 weight % mica was found to be optimal with respect to the compromise between electrochromic coloration and pearlescent luster. This is, to the best of our knowledge, the first report on the preparation and characterization of WO3-mica inorganic composites with high luster in both bleached and colored states.

14.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931994

RESUMEN

Two new triarylamine-based diamine monomers, namely, N,N'-bis(4-methoxyphenyl)-N,N'-bis(4-(4-aminophenyl-4'-methoxyphenylamino)phenyl)-p-phenylenediamine (3) and N,N'-bis(4-methoxyphenyl)-N,N'-bis(4-((4-aminophenyl-1-naphthyl)amino)phenyl)-p-phenylenediamine (7), were successfully synthesized and led to two series of electroactive polyamides by polycondensation reactions with common aromatic dicarboxylic acids. The polymers demonstrated multicolored electrochromism, high optical contrast, and remarkable enhancements in redox and electrochromic stability. Compared to other triarylamine-based polymers, the studied polyamides exhibited enhanced electrochromic stability (only 3~6% decay of its coloration efficiency at 445 nm after 14,000 switching cycles) at the first oxidation stage. The polyamides also showed strong absorption in the near-infrared region upon oxidation. Polymers with multicolored electrochromism and high redox stability can be developed by incorporation of four triarylamine cores in each repeat unit and electron-donating methoxy groups on the active sites of the triphenylamine units.

15.
ACS Appl Mater Interfaces ; 16(27): 35372-35380, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932621

RESUMEN

Infrared electrochromic devices (IR-ECDs) are pivotal for dynamic thermal regulation. However, the quest for all-solid-state IR-ECDs with high stability and a broadly tunable range of emissivity remains a challenge. This study presents the development of an all-solid-state infrared electrochromic device (IR-ECD) with the structure of ITO/HxWO3/Ta2O5/Pd/Mg3Ni based on the hydrogen-induced metal-insulator transition of Mg-Ni alloy films. The emissivity modulation is improved by film stack optimization, with changes of 0.32 and 0.47 in the 3-5 and 7.5-14 µm bands, respectively. The introduction of an ultrathin Ti isolation layer between the catalytic and electrolyte layers enhances the cyclic stability. Our findings offer a novel strategy for the design and fabrication of all-solid-state IR electrochromic devices and highlight the potential of Mg-Ni alloy-based all-solid-state IR-ECDs in advanced energy and information fields.

16.
ACS Appl Mater Interfaces ; 16(23): 30421-30429, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832560

RESUMEN

Electrochromic devices (ECDs), which are capable of modulating optical properties in the visible and long-wave infrared (LWIR) spectra under applied voltage, are of great significance for military camouflage. However, there are a few materials that can modulate dual frequency bands. In addition, the complex and specialized structural design of dual-band ECDs poses significant challenges. Here, we propose a novel approach for a bendable ECD capable of modulating LWIR radiation and displaying multiple colors. Notably, it eliminates the need for a porous electrode or a grid electrode, thereby improving both the response speed and fabrication feasibility. The device employs multiwalled carbon nanotubes (MWCNTs) as both the transparent electrode and the LWIR modulator, polyaniline (PANI) as the electrochromic layer, and ionic liquids (HMIM[TFSI]) as the electrolyte. The ECD is able to reduce its infrared emissivity (Δε = 0.23) in a short time (resulting in a drop in infrared temperature from 50 to 44 °C) within a mere duration of 0.78 ± 0.07 s while changing its color from green to yellow within 3 s when a positive voltage of 4 V is applied. In addition, it exhibits excellent flexibility, even under bending conditions. This simplified structure provides opportunities for applications such as wearable adaptive camouflage and multispectral displays.

17.
Small ; : e2403156, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874058

RESUMEN

Energy-efficient glass windows are pivotal in modern infrastructure striving toward the "Zero energy" concept. Electrochromic (EC) energy storage devices emerge as a promising alternative to conventional glass, yet their widespread commercialization is impeded by high costs and dependence on external power sources. Addressing this, redox potential-based self-powered electrochromic (RP-SPEC) devices are introduced leveraging established EC materials like tungsten oxide (WO3) and vanadium-doped nickel oxide (V-NiO) along with aluminum (Al) as an anode. These devices produce open circuit voltages (OCV) exceeding ±0.3 V, enabling autonomous operation for multiple cycles. The WO3 film exhibits 1% transmission and 88% modulation in the colored state at 550 nm with a mere 260 nm thickness. The redox interactions facilitate coloring and bleaching cycles without external power, while photo-charging rejuvenates the system. Notably, the inherent voltages of the RP-SPEC device offer dual functionality, powering electronic devices for up to 81 h. Large-area (≈28 cm2) device feasibility is demonstrated, paving the way for industrial adoption. The RP-SPEC device promises to revolutionize smart window technology by offering both energy efficiency and autonomous operation, thus advancing sustainable infrastructure.

18.
Biosens Bioelectron ; 260: 116455, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824702

RESUMEN

In this work, a potential-controlled electrochromic visual biosensor was developed for detecting zearalenone (ZEN) using a distance readout strategy. The sensor chip includes a square detection area and a folded signal output area created with laser etching technology. The detection area is modified with graphene oxide and ZEN aptamer, while Prussian blue (PB) is electrodeposited onto the signal output channel. When an appropriate voltage is applied, PB in the signal output area is reduced to colorless Prussian white (PW). The target ZEN molecules have the capability to release aptamers from graphene oxide (GO) surface in the detection area, resulting in a subsequent change in the potential of the visual signal output channel. This change determines the length of the channel that changes from blue to colorless, with the color change distance being proportional to the ZEN concentration. Using this distance readout strategy, ZEN detection within the range of 1 ng/mL to 300 ng/mL was achieved, with a detection limit of 0.29 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Límite de Detección , Zearalenona , Zearalenona/análisis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Grafito/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Diseño de Equipo , Ferrocianuros/química , Colorimetría/instrumentación , Colorimetría/métodos
19.
Adv Sci (Weinh) ; 11(28): e2401948, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769650

RESUMEN

The integration of electrochromic devices and energy storage systems in wearable electronics is highly desirable yet challenging, because self-powered electrochromic devices often require an open system design for continuous replenishment of the strong oxidants to enable the coloring/bleaching processes. A self-powered electrochromic device has been developed with a close configuration by integrating a Zn/MnO2 ionic battery into the Prussian blue (PB)-based electrochromic system. Zn and MnO2 electrodes, as dual shared electrodes, the former one can reduce the PB electrode to the Prussian white (PW) electrode and serves as the anode in the battery; the latter electrode can oxidize the PW electrode to its initial state and acts as the cathode in the battery. The bleaching/coloring processes are driven by the gradient potential between Zn/PB and PW/MnO2 electrodes. The as-prepared Zn||PB||MnO2 system demonstrates superior electrochromic performance, including excellent optical contrast (80.6%), fast self-bleaching/coloring speed (2.0/3.2 s for bleaching/coloring), and long-term self-powered electrochromic cycles. An air-working Zn||PB||MnO2 device is also developed with a 70.3% optical contrast, fast switching speed (2.2/4.8 s for bleaching/coloring), and over 80 self-bleaching/coloring cycles. Furthermore, the closed nature enables the fabrication of various flexible electrochromic devices, exhibiting great potentials for the next-generation wearable electrochromic devices.

20.
Adv Sci (Weinh) ; 11(29): e2402369, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810148

RESUMEN

Rechargeable mild aqueous Zn/MnO2 batteries are currently attracting great interest thanks to their appealing performance/cost ratio. Their operating principle relies on two complementary reversible electrodeposition reactions at the anode and cathode. Transposing this operating principle to transparent conductive windows remains an unexplored facet of this battery chemistry, which is proposed here to address with the development of an innovative bifunctional smart window, combining electrochromic and charge storage properties. The proof-of-concept of such bifunctional Zn/MnO2 smart window is provided using a mild buffered aqueous electrolyte and different architectures. To maximize the device's performance, transparent nanostructured ITO cathodes are used to reversibly electrodeposit a high load of MnO2 (up to 555 mA h m-2 with a CE of 99.5% over 200 cycles, allowing to retrieve an energy density as high as 860 mA h m-2 when coupled with a zinc metal frame), while flat transparent FTO anodes are used to reversibly electrodeposit an homogenous coating of zinc metal (up to ≈280 mA h m-2 with a CE > 95% over 50 cycles). The implementation of these two reversible electrodeposition processes in a single smart window has been successfully achieved, leading for the first time to a dual-tinting energy storage smart window with an optimized face-to-face architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA