Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 3): 134384, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098683

RESUMEN

This study aimed to develop hydrogel dressings for wound healing composed of gum tragacanth (TG) and polyvinyl alcohol (PVA) loaded with Graphene oxide (GO) and Cinnamon oil (CMO) using electron beam irradiation. The impact of the preparation conditions and the incorporation of GO and CMO on the characteristic properties of the prepared CMO-(PVA/TG)-GO wound dressings was evaluated. The healing-related characteristics were assessed, including fluid absorption and retention, water vapor transmission rate (WVTR), hemolytic assay, and antimicrobial potential. Wound healing efficacy was evaluated using a scratch wound healing assay. FTIR analysis verified the chemical structure, whereas scanning electron microscopy demonstrated an appropriate porosity structure necessary for optimal wound healing. The gel content increases with the initial total polymer concentration and the irradiation dose increases. Higher GO and CMO content improve the gel content and decreases swelling. WVTR decreases with the rise in CMO content. In vitro, cytotoxicity and hemolytic potency assessments confirmed their biocompatibility. The incorporation of GO and CMO enhances the antimicrobial activity and wound-healing capability. Based on the above findings, CMO-(PVA/TG)-GO dressings show promising potential as candidates for wound care.

2.
AME Case Rep ; 8: 81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091543

RESUMEN

Background: Subungual exostosis is a type of heterotopic ossification, which often has unclear margins. Therefore, marginal resection may cause recurrence and wide resection is sometimes required to achieve a complete cure. However, wide resection may cause postoperative nail deformity and revision of this deformity is generally difficult. The primary treatment of subungual exostosis is surgical treatment, and there have been no comprehensive reports on the efficacy of adjunctive treatments. Although postoperative electron beam irradiation has been successfully used after heterotopic ossification excision to prevent recurrence, there are no reports on the use of this procedure following subungual exostosis resection. Case Description: Herein, we report a case of refractory subungual exostosis that developed as a result of chronic irritation and inflammation caused by an ingrown nail and recurred after initial resection. We performed marginal resection of the lesion to preserve the nail matrix and nail bed as possible, a two-stage skin grafting procedure, and electron-beam irradiation to prevent recurrence. Conclusions: Excellent results were achieved both in terms of complete cure and cosmetic appearance, suggesting that electron-beam irradiation following refractory subungual exostosis excision may help prevent its recurrence. We expect a further study including many cases of subungual exostosis treated with postoperative electron-beam irradiation to be conducted.

3.
Adv Sci (Weinh) ; : e2404001, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973254

RESUMEN

Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100 nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22 µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar-1, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.

4.
Int J Biol Macromol ; 275(Pt 1): 133626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964691

RESUMEN

Low-viscosity hydroxypropyl methylcellulose (HPMC) was obtained by electron beam irradiation, and its use as an excipient for improving the properties of spray dried pharmaceutical powders was investigated. The minimum molecular weight of HPMC which could maintain the capacity of encapsulation and powder modification was explored. As the irradiation dose was increased from 10 to 200 kGy, the molecular weight and viscosity of HPMC decreased linearly. However, its main structure and degrees of methoxy and hydroxypropyl substitution were not significantly affected. The irradiated HPMC could encapsulate particles during spray drying and, thus, modify powder properties. Furthermore, the water content of spray-dried powders with irradiated HPMC was lower than that with parent HPMC. After the spray-dried powder with irradiated HPMC was prepared into granules, their dissolution rate was also faster. However, in order to achieve high encapsulation, the molecular weight of HPMC should be ensured to be above 7.5 kDa. The designated low-viscosity HPMC obtained by electron beam irradiation is a suitable powder-modification material for use in spray drying, and it shows promise as a superior excipient in medicine, food, paint industries, among others.


Asunto(s)
Electrones , Derivados de la Hipromelosa , Peso Molecular , Secado por Pulverización , Derivados de la Hipromelosa/química , Viscosidad , Polvos , Tamaño de la Partícula , Excipientes/química , Agua/química
5.
Gels ; 10(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920928

RESUMEN

At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.

6.
Adv Sci (Weinh) ; 11(30): e2401562, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860673

RESUMEN

Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites. By varying the composition of the microenvironment scaffold structure, the contact and interaction behavior with the reaction participants can be tuned, thereby affecting the catalytic activity and selectivity. As a result, the framework catalysts produced in this way exhibit excellent catalytic performance in the synthesis of glycinate esters and indole derivatives. This manipulation is reminiscent of enzymatic catalysis, which adjusts the internal polarity environment and controls the output of products by altering the scaffold structure.

7.
Carbohydr Polym ; 337: 122187, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710543

RESUMEN

The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.


Asunto(s)
Electrones , Ácidos Grasos , Solubilidad , Almidón , Almidón/química , Ácidos Grasos/química , Ácidos Láuricos/química , Reología , Hidrólisis , Ácido Oléico/química , Lípidos/química
8.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730841

RESUMEN

It is vital to maximize the safety of outdoor constructions, airplanes, and space vehicles by protecting against the impact of airborne debris from increasing winds due to climate change, or from bird strikes or micrometeoroids. In a widely-used compression-molded short glass fiber polyester bulk-molded compound (SGFRP-BMC) with 55% wt. CaCO3 filler, the center of the mother panel has lower impact strength than the outer sections with solidification texture angles and short glass fiber (SGF) orientations being random from 0 to 90 degrees. Therefore, a new double-step process of: (1) reducing commercial fiber length without change in molding equipment; followed by a (2) 0.86 MGy dose of homogeneous low-voltage electron beam irradiation (HLEBI) to both sides of the finished samples requiring no chemicals or additives, which is shown to increase the Charpy impact value (auc) about 50% from 6.26 to 9.59 kJm-2 at median-accumulative probability of fracture, Pf = 0.500. Shortening the SGFs results in higher fiber spacing density, Sf, as the thermal compressive stress site proliferation by action of the CTE difference between the matrix and SGF while the composite cools and shrinks. To boost impact strength further, HLEBI provides additional nano-compressive stresses by generating dangling bonds (DBs) creating repulsive forces while increasing SGF/matrix adhesion. Increased internal cracking apparently occurs, raising the auc.

9.
J Colloid Interface Sci ; 670: 246-257, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761577

RESUMEN

Sodium metal batteries (SMBs) are considered as strong alternatives to lithium-ion batteries (LIBs), due to the inherent merits of sodium metal anodes (SMAs) including low redox potential (-2.71 V vs. SHE), high theoretical capacity (1166 mAh g-1), and abundant resources. However, the uncontrollable Na dendrite growth has significantly impeded the practical deployment of SMBs. Separator modification has emerged as an effective strategy for substantially enhancing the performance of SMAs. Herein, for the first time, we present the successful grafting polyacrylic acid (PAA) onto polypropylene (PP) separators (denoted as PP-g-PAA) using highly efficient electron beam (EB) irradiation to improve the cyclability of SMAs. The polar carboxyl groups of PAA can facilitate the electrolyte wetting and provide ample mechanical strength to resist dendrite penetration. Consequently, the regulation of Na+ ion flux enables uniform Na+ deposition with dendrite-free morphology, facilitated by the favorable anode/separator interface. The PP-g-PAA separator significantly enhances the cyclability of fabricated cells. Notably, the lifespan of Na||Na symmetric cells can be extended up to 5519 h at 1 mA cm-2 and 1 mAh cm-2. The stable design of the anode/separator interface achieved through polyolefin separator modification presented in this study holds promise for the further advancement of next-generation advanced battery systems.

10.
Small ; : e2401426, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686686

RESUMEN

The current high-capacity lithium-ion batteries (LIBs), reliant on flammable liquid electrolytes (LEs) and nickel-rich cathodes, are plagued by safety hazards, especially the risk of hazardous gas release stemming from internal side reactions. To address these safety concerns, an electron beam (E-beam)-induced gel polymer electrolyte (E-Gel) is introduced, employing dipentaerythritol hexaacrylate (DPH) as a bi-functional cross-linkable additive (CIA). The dual roles of DPH are exploited through a strategically designed E-beam irradiation process. Applying E-beam irradiation on the pre-cycled cells allows DPH to function as an additive during the initial cycle, establishing a protective layer on the surface of the anode and cathode and as a cross-linker during the E-beam irradiation step, forming a polymer framework. The prepared E-Gel with CIA has superior interfacial compatibility, facilitating lithium-ion diffusion at the electrode/E-Gel interface. The electrochemical assessment of 1.2 Ah pouch cells demonstrates that E-Gel substantially reduces gas release by 2.5 times compared to commercial LEs during the initial formation stage and ensures superior reversible capacity retention even after prolonged cycling at 55 °C. The research underscores the synergy of bifunctional CIA with E-beam technology, paving the way for large-scale production of safe, high-capacity, and commercially viable LIBs.

11.
Int J Biol Macromol ; 267(Pt 2): 131461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599424

RESUMEN

Recycling and high-value reutilization of waste cotton fabrics (WCFs) has attracted a widespread concern. One potential solution is to extract nanocellulose. Sulfuric acid hydrolysis is a conventional method for the production of nanocellulose with high negative charge from WCFs. However, the recycling and disposal of chemicals in nanocellulose production, along with low yields, remain significant challenges. Consequently, there is a pressing need for a sustainable method to produce nanocellulose at higher yield without the use of chemicals. Herein, we propose a green, sustainable and chemical-free method to extract nanocellulose from WCFs. The nanocellulose displayed a rod-like shape with a length of 50-300 nm, a large aspect ratio of 18.4 ± 2 and the highest yield of up to 89.9 %. The combined short-time and efficient two-step process, involving electron beam irradiation (EBI) and high-pressure homogenization (HPH), offers a simple and efficient alternative approach with a low environmental impact, to extract nanocellulose. EBI induced a noticeable degradation in WCFs and HPH exfoliated cellulose to nano-size with high uniformity via mechanical forces. The as-prepared nanocellulose exhibits excellent emulsifying ability as the Pickering emulsion emulsifier. This work provides a facile and efficient approach for nanocellulose fabrication as well as a sustainable way for recycle and reutilization of the waste cotton fabrics.


Asunto(s)
Celulosa , Fibra de Algodón , Celulosa/química , Electrones , Tecnología Química Verde/métodos , Hidrólisis
12.
Int J Biol Macromol ; 266(Pt 2): 131360, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580017

RESUMEN

A humic acid-gelatin (HA-Gel) hydrogel, a gallic acid-xanthan gum (GA-XG) hydrogel, a HA-Gel/GA-XG hydrogel, and superabsorbent polymer (SAP) of HA-Gel/GA-XG/polyacrylamide (PAM) hydrogel were synthesized using electron beam irradiation method. The capability of synthesized hydrogels in loading and controlled release of fulvic acid (FA) was studied. The chemical and physical structure of sorbents was confirmed by various analyses. The effect of irradiation dose on mechanical properties, gel percentage, swelling, and absorbency under load (AUL) of the sorbents was investigated. By changing the hydrogel structures into the SAP form, its swelling capacity was increased from 37 to 320 g/g. Both hybrid hydrogel and SAP were reusable for up to 7 cycles. The maximum fertilizer loading capacities for SAP and hybrid hydrogel were 402.1 and, 175.5 mg g-1, respectively. In comparison to hydrogels, the SAP showed a slower FA-release performance. Thus, in soil media, 86 % of FA was released in 15-20 days from the hybrid hydrogel while with the SAP, 81 % of FA was released in 30-35 days. The significant improvement in the growth of fodder corn treated with FA-loaded SAP in the greenhouse media in comparison to the control groups showed the effective performance of the designed SAP, favoring its practical applications.


Asunto(s)
Benzopiranos , Gelatina , Hidrogeles , Polisacáridos Bacterianos , Zea mays , Hidrogeles/química , Benzopiranos/química , Polisacáridos Bacterianos/química , Gelatina/química , Zea mays/química , Preparaciones de Acción Retardada/química , Electrones , Polímeros/química , Fertilizantes , Ácido Gálico/química , Sustancias Húmicas
13.
J Sci Food Agric ; 104(12): 7713-7721, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38591367

RESUMEN

BACKGROUND: Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non-thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS: The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6-logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ-helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION: The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.


Asunto(s)
Electrones , Irradiación de Alimentos , Cabras , Leche , Animales , Leche/microbiología , Leche/química , Leche/efectos de la radiación , Irradiación de Alimentos/métodos , Proteínas de la Leche/química , Bacterias/efectos de la radiación , Pasteurización/métodos , Microbiología de Alimentos
14.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473770

RESUMEN

Turmeric, known for its curcuminoid-rich rhizome, particularly curcumin, exhibits notable antioxidant and antiviral properties. The likelihood of microbial contamination necessitates finding reliable techniques for subjecting the sample to radiation from this plant-based raw material. One alternative is to expose curcumin to radiation (e-beam), which was carried out as part of this research. Confirmation of the lack of curcumin decomposition was carried out using HPLC-DAD/MS techniques. Additionally, using the EPR technique, the generated free radicals were defined as radiation effects. Using a number of methods to assess the ability to scavenge free radicals (DPPH, ABTS, CUPRAC, and FRAP), a slight decrease in the activity of curcumin raw material was determined. The analysis of the characteristic bands in the FT-IR spectra allowed us to indicate changes in the phenolic OH groups as an effect of the presence of radicals formed.


Asunto(s)
Curcumina , Espectroscopía Infrarroja por Transformada de Fourier , Diarilheptanoides , Antioxidantes , Radicales Libres
15.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474451

RESUMEN

This study focuses on the behavior of volatile organic compounds in beef after irradiation with 1 MeV accelerated electrons with doses ranging from 0.25 kGy to 5 kGy to find reliable dose-dependent markers that could be used for establishing an effective dose range for beef irradiation. GC/MS analysis revealed that immediately after irradiation, the chemical yield and accumulation rate of lipid oxidation-derived aldehydes was higher than that of protein oxidation-derived aldehydes. The nonlinear dose-dependent relationship of the concentration of volatile organic compounds was explained using a mathematical model based on the simultaneous occurrence of two competing processes: decomposition of volatile compounds due to direct and indirect action of accelerated electrons, and accumulation of volatile compounds due to decomposition of other compounds and biomacromolecules. A four-day monitoring of the beef samples stored at 4 °C showed that lipid oxidation-derived aldehydes, protein oxidation-derived aldehydes and alkanes as well as alcohol ethanol as an indicator of bacterial activity were dose-dependent markers of biochemical processes occurring in the irradiated beef samples during storage: oxidative processes during direct and indirect action of irradiation, oxidation due to the action of reactive oxygen species, which are always present in the product during storage, and microbial-enzymatic processes. According to the mathematical model of the change in the concentrations of lipid oxidation-derived aldehydes over time in the beef samples irradiated with different doses, it was found that doses ranging from 0.25 kGy to 1 kGy proved to be most effective for beef irradiation with accelerated electrons, since this dose range decreases the bacterial content without considerable irreversible changes in chemical composition of chilled beef during storage.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Bovinos , Electrones , Oxidación-Reducción , Lípidos , Aldehídos/análisis
16.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475377

RESUMEN

Titanium dioxide (TiO2) is a widely studied material with many attractive properties such as its photocatalytic features. However, its commercial use is limited due to issues such as deactivation in the visible spectrum caused by its wide bandgap and the short lifetime of photo-excited charge carriers. To overcome these challenges, various modifications could be considered. In this study, we investigated copper doping and electron beam treatment. As-spun TiO2 nanofibers were fabricated by electrospinning a TiO2 sol, which obtained viscosity through a polyvinylpyrrolidone (PVP) matrix. Cu-doped TiO2 nanofibers with varying dopant concentrations were synthesized by adding copper salts. Then, the as-spun nanofibers were calcined for crystallization. To evaluate photocatalytic performance, a photodegradation test of methylene blue aqueous solution was performed for 6 h. Methylene blue concentration was measured over time using UV-Vis spectroscopy. The results showed that Cu doping at an appropriate concentration and electron-beam irradiation showed improved photocatalytic efficiency compared to bare TiO2 nanofibers. When the molar ratio of Cu/Ti was 0.05%, photodegradation rate was highest, which was 10.39% higher than that of bare TiO2. As a result of additional electron-beam treatment of this sample, photocatalytic efficiency improved up to 8.93% compared to samples without electron-beam treatment.

17.
Carbohydr Polym ; 330: 121840, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368116

RESUMEN

In this work, we developed a strategy to construct poly (butylene adipate-co-terephthalate) (PBAT) composite plastics with excellent mechanical properties, superior thermal stability and enhanced biodegradability by combining acetylated celluloses (ECs) mediated by electron beam irradiation (EBI), which works as a toughening agent. With findings, the EBI pretreatment assisted with acetylation was applied to develop ECs materials with a higher degree of acetylation than acetylation alone. The pretreated ECs with increased hydrophobicity tended to decrease the chance of self-aggregation and enhanced the interfacial compatibility and adhesion with PBAT in PBAT/ECs composite plastics. Thus, PBAT/ECs composite plastics exhibited a smoother and more uniform surface structure during preparation and offered higher tensile strength, water vapor transmission rate, water absorption rate, thermal stability and degradation rate, and lower elongation at a break during application. On top of that, the PBAT/ECs composite plastics were characterized by a series of methods containing Fourier transform infrared spectroscopy and X-ray diffraction, indicating that these properties are mainly caused by the acetylation of hydroxyl groups from cellulose and carboxyl groups of PBAT. The work is expected to expand the application scope of PBAT and cellulose and provide an attainable solution for a biodegradable substitute for traditional plastics.

18.
Small ; 20(30): e2309285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402441

RESUMEN

An amorphous carbon deposition layer (CDL) with nanoscale thickness induced by scanning electron microscope (SEM) electron beam is studied as a carbon-based protective layer on copper (Cu). CDL is prepared by inducing the deposition of pollutants or hydrocarbons in the cavity of SEM through electron beam irradiation (EBI). Wrinkles and cracks will not form and the interfacial spacing of CDL/Cu is smaller than Graphene/Cu (Gr/Cu). The thickness and coverage of the interfacial oxide layer of CDL/Cu are all smaller than that of the Gr/Cu after the same oxidation conditions. Characterization of Raman mapping also demonstrates that CDL shows better oxidation inhibition effects than graphene. The structure of CDL is determined to be C = C and C = O, CH3- and C-O can be loaded vertically on CDL. Density functional theory (DFT) is employed for demonstrating the smaller interfacial gap of CDL/Cu, less wrinkles and cracks and larger adsorbing energy of water/oxygen compared with Gr/Cu. Molecular dynamic (MD) simulation also indicates that the diffusion of water or oxygen into CDL/Cu is more difficult and the oxidation of Cu covered by CDL is well suppressed. This work provides a new approach for the study of carbon-based antioxidant materials on Cu.

19.
Int J Biol Macromol ; 260(Pt 2): 129426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232888

RESUMEN

The effects of electron beam irradiation (EBI) at different doses (0, 2, 4, 6, 8, and 10 kGy) were investigated on the structural and functional properties of casein, including their interrelationship. A gradual reduction in the α-helix content of the secondary structure (as a stable structure) indicates that casein under EBI treatment mainly undergoes fragmentation and aggregation from a structural perspective. Furthermore, the hydrophobic group and tryptophan in the tertiary structure were exposed, which opened up the internal structure of the protein. In addition, a continuously increasing irradiation dose led to casein aggregation, as confirmed by electron microscopy. The structural changes affected its functional properties, such as solubility, emulsification, foaming, and rheological properties, all of which increased first and subsequently decreased. Finally, at irradiation doses of 4-6 kGy, casein was modified to exhibit optimal functional properties, which enhanced its food processing value and performance.


Asunto(s)
Caseínas , Leche , Animales , Leche/química , Caseínas/química , Electrones , Solubilidad , Cabras
20.
Int J Biol Macromol ; 260(Pt 2): 129585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246473

RESUMEN

This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.


Asunto(s)
Globulinas , Glycine max , Electrones , Globulinas/química , Solubilidad , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA