Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39226422

RESUMEN

In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.

2.
Adv Sci (Weinh) ; : e2406494, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225443

RESUMEN

Oxybutynin (Ditropan), a widely distributed muscarinic antagonist for treating the overactive bladder, has been awaiting a definitive crystal structure for ≈50 years due to the sample and technique limitations. Past reports used powder X-ray diffraction (PXRD) to shed light on the possible packing of the molecule however their model showed some inconsistencies when compared with the 2D chemical structure. These are largely attributed to X-ray-induced photoreduction. Here microcrystal electron diffraction (MicroED) is used to successfully unveil the experimental 3D structure of oxybutynin hydrochloride showing marked improvement over the reported PXRD structure. Using the improved model, molecular docking is applied to investigate the binding mechanism between M3 muscarinic receptor (M3R) and (R)-oxybutynin, revealing essential contacts/residues and conformational changes within the protein pocket. A possible universal conformation is proposed for M3R antagonists, which is valuable for future drug development and optimization. This study underscores the immense potential of MicroED as a complementary technique for elucidating unknown pharmaceutical structures, as well as for protein-drug interactions.

3.
Small ; : e2404777, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140194

RESUMEN

Ferroelectric materials exhibit switchable spontaneous polarization below Curie's temperature, driven by octahedral distortions and rotations, as well as ionic displacements. The ability to manipulate polarization coupled with persistent remanence, drives diverse applications, including piezoelectric devices. In the last two decades, nanoscale exploration has unveiled unique material properties influenced by morphology, including the capability to manipulate polarization, patterns, and domains. This paper focuses on the characterization of nanometric sodium niobate (SN) synthesized from metallic niobium through alkali hydrothermal treatment, utilizing electron microscopy techniques, including high-resolution differential phase contrast (DPC) in scanning transmission electron microscopy (STEM). The material exhibits a nanoribbon structure forming a tree root-like network. The study identifies crystallographic phase, atomic columns displacement directions, and surface features, such as exposed planes and the absence of particular atomic columns. The high sensitivity of integrated DPC images proves crucial in overcoming observational challenges in other STEM modes. These observations are essential for potential applications in electronic, photocatalytic, and chemical reaction contexts.

4.
J Struct Biol X ; 10: 100107, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39100863

RESUMEN

Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/ß/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.

5.
J Appl Crystallogr ; 57(Pt 4): 1263-1269, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108825

RESUMEN

Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns.

6.
Ultramicroscopy ; 266: 114021, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39181065

RESUMEN

The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.

7.
Natl Sci Rev ; 11(9): nwae255, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39175595

RESUMEN

The Jahn-Teller effect (JTE) arising from lattice-electron coupling is a fascinating phenomenon that profoundly affects important physical properties in a number of transition-metal compounds. Controlling JT distortions and their corresponding electronic structures is highly desirable to tailor the functionalities of materials. Here, we propose a local coordinate strategy to regulate the JTE through quantifying occupancy in the [Formula: see text] and [Formula: see text] orbitals of Mn and scrutinizing the symmetries of the ligand oxygen atoms in MnO6 octahedra in LiMn2O4 and Li0.5Mn2O4. The effectiveness of such a strategy has been demonstrated by constructing P2-type NaLi x Mn1 - x O2 oxides with different Li/Mn ordering schemes. In addition, this strategy is also tenable for most 3d transition-metal compounds in spinel and perovskite frameworks, indicating the universality of local coordinate strategy and the tunability of the lattice-orbital coupling in transition-metal oxides. This work demonstrates a useful strategy to regulate JT distortion and provides useful guidelines for future design of functional materials with specific physical properties.

8.
Ultramicroscopy ; 265: 114023, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39126738

RESUMEN

The diffraction patterns of crystalline materials with local order contain sharp Bragg reflections as well as highly structured diffuse scattering. In this study, we quantitatively show how the diffuse scattering in three-dimensional electron diffraction (3D ED) data is influenced by various parameters, including the data acquisition mode, the detector type and the use of an energy filter. We found that diffuse scattering data used for quantitative analysis are preferably acquired in selected area electron diffraction (SAED) mode using a CCD and an energy filter. In this study, we also show that the diffuse scattering in 3D ED data can be obtained with a quality comparable to that from single-crystal X-ray diffraction. As electron diffraction requires much smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate the local structure of many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.

9.
IUCrJ ; 11(Pt 5): 878-890, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39146197

RESUMEN

This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal-organic complex, iron(III) acetylacetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetylacetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe-O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65-2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00-0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal-organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED.

10.
IUCrJ ; 11(Pt 5): 744-748, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39194259

RESUMEN

3D electron diffraction (3DED) is increasingly employed to determine molecular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using dichloromethane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.

11.
Chemphyschem ; : e202400649, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172113

RESUMEN

The platinum hydride cluster Pt12H24- is studied in gas phase by a combination of trapped ion electron diffraction and density functional theory computations. We find a cuboctahedral platinum cage with bridge bound hydrogen atoms. This unusual structure is stabilized by Pt-H-Pt multicenter bonds and shows characteristics of spherical aromaticity.

12.
IUCrJ ; 11(Pt 5): 695-707, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39190506

RESUMEN

The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.


Asunto(s)
Complejos Multiproteicos , Receptores Inmunológicos , Transducción de Señal , Humanos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Inmunidad Innata , Espectroscopía de Resonancia Magnética/métodos , Dominios Proteicos , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo
13.
Acta Crystallogr C Struct Chem ; 80(Pt 9): 450-457, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120499

RESUMEN

Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C33H16F10N4)(CO)2] or Ru(CO)2[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)2[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)2[DMBil1] is weakly luminescent, displaying λem = 552 nm upon excitation at λex = 500 nm, supports two reversible 1 e- reductions at -1.45 and -1.73 V (versus Fc+/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)2[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.

14.
Ultramicroscopy ; 266: 114022, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154615

RESUMEN

Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). It was observed that, in the integration process, Rint increases as the beam energy is reduced, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently ignore inelastic scattering effects.

15.
ACS Nano ; 18(29): 18870-18879, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001861

RESUMEN

Patterning and defect engineering are key methods for tuning the properties and enabling distinctive functionalities in two-dimensional (2D) materials. However, generating 2D periodic patterns of point defects in 2D materials, such as vacancy lattices that can serve as antidot lattices, has been elusive until now. Herein, we report on 2D transition metal dihalides epitaxially grown on metal surfaces featuring periodically assembled halogen vacancies that result in alternating coordination of the transition metal atom. Using low-temperature scanning probe microscopy and low-energy electron diffraction, we identified the structural properties of intrinsically patterned FeBr2 and CoBr2 monolayers grown epitaxially on Au(111). Density functional theory reveals that Br vacancies are facilitated by low formation energies, and the formation of a vacancy lattice results in a substantial decrease in the lattice mismatch with the underlying Au(111). We demonstrate that interfacial strain engineering presents a versatile strategy for controlled patterning in two dimensions with atomic precision over several hundred nanometers to solve a long-standing challenge of growing atomically precise antidot lattices. In particular, patterning of 2D materials containing transition metals provides a versatile method to achieve unconventional spin textures with noncollinear spin.

16.
Adv Sci (Weinh) ; : e2400919, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976563

RESUMEN

Metal-semiconductor interfaces are crucial components of optoelectronic and electrical devices, the performance of which hinges on intricate dynamics involving charge transport and mechanical interaction at the interface. Nevertheless, structural changes upon photoexcitation and subsequent carrier transportation at the interface, which crucially impact hot carrier stability and lifetime, remain elusive. To address this long-standing problem, they investigated the electron dynamics and resulting structural changes at the Au/TiO2 interface using ultrafast electron diffraction (UED). The analysis of the UED data reveals that interlayer electron transfer from metal to semiconductor generates a strong coupling between the two layers, offering a new way for ultrafast heat transfer through the interface and leading to a coherent structural vibration that plays a critical role in propagating mechanical stress. These findings provide insights into the relationship between electron transfer and interfacial mechanical and thermal properties.

17.
J Struct Biol X ; 9: 100102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962493

RESUMEN

Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the crystal cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that crystals in a suspended drop could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the SARS­CoV­2 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting systematic preferred orientations, unlocking new possibilities for structure determination by MicroED.

18.
Acta Crystallogr A Found Adv ; 80(Pt 5): 387-390, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39056106

RESUMEN

The superstructure spots that appear in diffraction patterns of tilted perovskites are well documented and easily calculated using crystallographic software. Here, by considering a distortion mode as a perturbation of the prototype perovskite structure, it is shown how the structure-factor equation yields Boolean conditions for the presence of superstructure reflections. This approach may have some advantages for the analysis of electron diffraction patterns of perovskites.

19.
IUCrJ ; 11(Pt 5): 843-848, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39072705

RESUMEN

The antipsychotic drug olanzapine is well known for its complex polymorphism. Although widely investigated, the crystal structure of one of its anhydrous polymorphs, form III, is still unknown. Its appearance, always in concomitance with forms II and I, and the impossibility of isolating it from that mixture, have prevented its structure determination so far. The scenario has changed with the emerging field of 3D electron diffraction (3D ED) and its great advantages in the characterization of polyphasic mixtures of nanosized crystals. In this study, we show how the application of 3D ED allows the ab initio structure determination and dynamical refinement of this elusive crystal structure that remained unknown for more than 20 years. Olanzapine form III is monoclinic and shows a similar but shifted packing with respect to form II. It is remarkably different from the lowest-energy structures predicted by the energy-minimization algorithms of crystal structure prediction.

20.
IUCrJ ; 11(Pt 5): 730-736, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078666

RESUMEN

Reaching beyond the commonly used spherical atomic electron density model allows one to greatly improve the accuracy of hydrogen atom structural parameters derived from X-ray data. However, the effects of atomic asphericity are less explored for electron diffraction data. In this work, Hirshfeld atom refinement (HAR), a method that uses an accurate description of electron density by quantum mechanical calculation for a system of interest, was applied for the first time to the kinematical refinement of electron diffraction data. This approach was applied here to derive the structure of ordinary hexagonal ice (Ih). The effect of introducing HAR is much less noticeable than in the case of X-ray refinement and it is largely overshadowed by dynamical scattering effects. It led to only a slight change in the O-H bond lengths (shortening by 0.01 Å) compared with the independent atom model (IAM). The average absolute differences in O-H bond lengths between the kinematical refinements and the reference neutron structure were much larger: 0.044 for IAM and 0.046 Šfor HAR. The refinement results changed considerably when dynamical scattering effects were modelled - with extinction correction or with dynamical refinement. The latter led to an improvement of the O-H bond length accuracy to 0.021 Šon average (with IAM refinement). Though there is a potential for deriving more accurate structures using HAR for electron diffraction, modelling of dynamical scattering effects seems to be a necessary step to achieve this. However, at present there is no software to support both HAR and dynamical refinement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA