Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39255361

RESUMEN

The storage of renewable energy through the conversion of CO2 to CO provides a viable solution for the intermittent nature of these energy sources. The immobilization of rhenium(I) tricarbonyl molecular complexes is presented through the reductive coupling of bis(diazonium) aryl substituents. The heterogenized complex was characterized through ultra-visible, attenuated total reflectance, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy to probe the electronic structure of the immobilized complex. In addition, studies of cyclic voltammetry, controlled potential electrolysis, and electrochemical impedance spectroscopy were conducted to examine the CO2 reduction activity. The structure and CO2 reduction performance were compared with a previously reported immobilized rhenium(I) tricarbonyl molecular complex to probe the effect of varying the tethering of the aryl substituent from the 5,5'-position to the 4,4'-position of the 2,2'-bipyridine backbone. The immobilized complex on carbon cloth at the 4,4'-position provided excellent selectivity (FECO > 99%) and maximum TONCO and TOFCO values of 3359 and 0.9 s-1, respectively, without the addition of a BroÌ·nsted acid source. A nonaqueous flow cell demonstrated the stability of this complex during a 5 h electrolysis. Tethering at the 4,4'-position, compared to the 5,5'-position, yielded lower overall activity for CO2 reduction and was attributed to the difference in growth morphology and formation of aggregations, due to Re-Re dimer formation and π-π stacking interactions within the metallopolymer matrix. For carbon cloth substrates, an optimized catalyst loading was determined to be 44.6 ± 11 nmol/cm2.

2.
Luminescence ; 39(8): e4843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129388

RESUMEN

Photoelectric functional materials with electrochemical reversible activity and fluorescence intensities have attracted significant interest due to their wide range of applications in optoelectronic devices. In this work, a series of photoresponsive and electroactive monomers based on thieno[3.4-c]pyrrole-4,6-dione (TPD) are synthesized and characterized. They possess planar geometry with smaller dihedral angles owing to the existence of a noncovalent conformation lock coming from the S atoms and the O atoms. Crystallographic, spectroscopic, and computational results reveal that the introduction of the TPD unit can endow the monomers with aggregation-induced emission (AIE), reduced energy levels, and increased electrochemical activity. The monomers were successfully polymerized through the electrochemical method, and the corresponding polymers displayed reversible electrochemical activity and stability. Moreover, polymer films based on 3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (ProE)-TPD have electrochromic properties in the near-infrared field with a high value of optical contrast ratio (∆T) of 27.1% at 1000 nm.


Asunto(s)
Técnicas Electroquímicas , Polimerizacion , Pirroles , Pirroles/química , Pirroles/síntesis química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química
3.
Molecules ; 29(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203050

RESUMEN

In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2',6'-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2',6'-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 µM detection limit.

4.
Sci Rep ; 14(1): 16601, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025924

RESUMEN

Herein, a novel electrochemical sensor that was used for the first time for sensitive and selective detection of dopamine (DA) was fabricated. The new sensor is based on the decoration of the glassy carbon electrode surface (GC) with a polymer film of 1,3-Benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)) acetonitrile (poly(BTCA). The prepared (poly(BTCA) was examined by using different techniques such as 1H NMR, 13C NMR, FTIR, and UV-visible spectroscopy. The electrochemical investigations of DA were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results obtained showed that the modifier increased the electrocatalytic efficiency with a noticeable increase in the oxidation peak current of DA in 0.1 M phosphate buffer solution (PBS) at an optimum pH of 7.0 and scan rate of 200 mV/s when compared to unmodified GC. The new sensor displays a good performance for detecting DA with a limit of detection (LOD 3σ), and limit of quantification (LOQ 10σ) are 0.28 nM and 94 nM respectively. The peak current of DA is linearly proportional to the concentration in the range from 0.1 to 10.0 µM. Additionally, the fabricated electrode showed sufficient reproducibility, stability, and selectivity for DA detection in the presence of different interferents. The proposed poly(BTCA)/GCE sensor was effectively applied to detect DA in the biological samples.


Asunto(s)
Carbono , Dopamina , Técnicas Electroquímicas , Electrodos , Polímeros , Dopamina/análisis , Carbono/química , Polímeros/química , Técnicas Electroquímicas/métodos , Límite de Detección , Acetonitrilos/química , Humanos , Benzotiazoles/química , Técnicas Biosensibles/métodos
5.
Chemistry ; : e202401752, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900538

RESUMEN

Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl:OA in molar ratios 1:1 and 2:1 and ChCl:EG 1:2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl:OA:EG-tDES with added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 2 µM - 200 µM, with detection limits of 0.37 µM and 0.49 µM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.

6.
ACS Appl Mater Interfaces ; 16(24): 30611-30621, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857116

RESUMEN

Polypyrrole (Ppy) is a biologically compatible polymer that is used as a matrix, in which drugs and enzymes can be incorporated by doping. Here, we suggest an inventive application of Ppy as a biorecognition film encapsulated with an antibody (Ab) as an alternative strategy for the on-site multistep functionalization of thiol-based self-assembled monolayers. The fabrication steps of the recognition films were followed by dropping pyrrole and Ab mixed solutions onto the electrode and obtaining a thin film by direct current electropolymerization. The efficiency of Ab immobilization was studied by using fluorescence microscopy and electrochemical (EC) methods. Finally, the Ab density was increased and immobilized in 1 min, and the sensing performance as an EC immunosensor was demonstrated using α-fetoprotein with a limit of detection of 3.13 pg/mL and sensing range from 1 pg/mL to 100 ng/mL. This study demonstrates the potential for electrochemical functionalization of biomolecules with high affinity and rapidity.


Asunto(s)
Anticuerpos Inmovilizados , Técnicas Electroquímicas , Polímeros , Pirroles , Pirroles/química , Inmunoensayo/métodos , Polímeros/química , Técnicas Electroquímicas/métodos , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Técnicas Biosensibles/métodos , Polimerizacion , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Electrodos , Límite de Detección , Humanos
7.
ACS Appl Mater Interfaces ; 16(20): 26121-26129, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728577

RESUMEN

The design of aqueous zinc-ion batteries (ZIBs) that have high specific capacity and long-term stability is essential for future large-scale energy storage systems. Cathode materials with extended π-conjugation and abundant active sites are desirable to enhance the charge storage performance and the cycling stability of the aqueous ZIB. Based on this concept, 6,9-dihydropyrazino[2,3-g]quinoxaline-2,3,7,8(1H,4H)-tetrone was chosen as the monomer to be electropolymerized onto carbon cloth (PDHPQ-Tetrone/CC). When used as the cathode material for aqueous ZIBs, an exceptional cycling life (>20,000 cycles) at a current density of 10 A g-1 was achieved, with the specific capacity maintained at 82.8% and with the Coulombic efficiency at around 100% throughout cycling. At the charge-discharge current density of 0.1 A g-1, the ZIB with PDHPQ-Tetrone/CC achieved a high specific capacity of 248 mAh g-1. Kinetic analyses showed that both surface-capacitive-controlled processes and semi-infinite diffusion-controlled processes contribute to the stored charge. The charge storage mechanism was investigated with ex situ characterizations and involves the redox processes of carbonyl/hydroxyl and amino/imino groups coupled with insertion and extraction of both Zn2+ and H+.

8.
Mikrochim Acta ; 191(6): 338, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780645

RESUMEN

A novel electrochemical sensor, MIP/Cu-MOF/rGO/AuNPs/GCE, was developed by depositing gold nanoparticles, coating Cu-MOF/GO on the surface of glassy carbon electrode (GCE) before electroreducing graphene oxide (GO) to rGO and covering molecularly imprinted membrane by electropolymerization for highly sensitive detection of electroneutral organophosphorus pesticide residues in agricultural product. Cyclic voltammetry, differential pulse voltametry, scanning electron microscopy, energy-dispersive spectroscopy, and atomic force microscopy were used to characterize the imprinted sensor. Several key factors such as chitosan concentration, suspension volume, pH of polymerization solution, and polymerization scanning rate during preparation of the imprinted sensor were optimized in detail. When electroneutral phosmet was used as a template, the linear range of MIP/Cu-MOF/rGO/AuNPs/GCE for detecting phosmet was 1.00 × 10-14-5.00 × 10-7 mol/L with the limit of detection of 7.20 × 10-15 mol/L at working potentials of - 0.2 to 0.6 V. The selectivity, reproducibility, and repeatability of MIP/Cu-MOF/rGO/AuNPs/GCE were all acceptable. The recoveries of this method for determining phosmet in real samples ranged from 94.2 to 106.5%. The MIP/Cu-MOF/rGO/AuNPs/GCE sensor could be applied to detect electroneutral pesticide residues in organisms and agricultural products.

9.
Adv Mater ; : e2402361, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762775

RESUMEN

The field of biomimetic electronics that mimic synaptic functions has expanded significantly to overcome the limitations of the von Neumann bottleneck. However, the scaling down of the technology has led to an increasingly intricate manufacturing process. To address the issue, this work presents a one-shot integrable electropolymerization (OSIEP) method with remote controllability for the deposition of synaptic elements on a chip by exploiting bipolar electrochemistry. Condensing synthesis, deposition, and patterning into a single fabrication step is achieved by combining alternating-current voltage superimposed on direct-current voltage-bipolar electropolymerization and a specially designed dual source/drain bipolar electrodes. As a result, uniform 6 × 5 arrays of poly(3,4-ethylenedioxythiophene) channels are successfully fabricated on flexible ultrathin parylene substrates in one-shot process. The channels exhibited highly uniform characteristics and are directly used as electrochemical synaptic transistor with synaptic plasticity over 100 s. The synaptic transistors have demonstrated promising performance in an artificial neural network (NN) simulation, achieving a high recognition accuracy of 95.20%. Additionally, the array of synaptic transistor is easily reconfigured to a multi-gate synaptic circuit to implement the principles of operant conditioning. These results provide a compelling fabrication strategy for realizing cost-effective and disposable NN systems with high integration density.

10.
ACS Appl Bio Mater ; 7(5): 3179-3189, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38581305

RESUMEN

Ruxolitinib (RXL) is a Janus kinase inhibitor used for treating intermediate- or high-risk myelofibrosis. This study presents an electrode modified with electrochemically polymerized taurine on a carbon paste electrode via cyclic voltammetry (CV). The surface characterization of the poly(taurine)-CP electrode was evaluated by using electrochemical (electrochemical impedance spectroscopy─EIS, CV), morphological (scanning electron microscope─SEM), and spectroscopic (Fourier-transform infrared spectroscopy─FT-IR) techniques. Under optimized conditions, RXL exhibited good linearity within the 0.01-1.0 µM concentration range, with a limit of detection (LOD) of 0.005 µM. The proposed electrochemical sensor demonstrated excellent selectivity, accuracy, precision, and repeatability. Furthermore, it effectively detected RXL in human urine and pharmaceutical samples.


Asunto(s)
Carbono , Electrodos , Nitrilos , Pirazoles , Pirimidinas , Taurina , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Carbono/química , Técnicas Electroquímicas , Inhibidores de las Cinasas Janus/química , Inhibidores de las Cinasas Janus/farmacología , Ensayo de Materiales , Estructura Molecular , Nitrilos/química , Nitrilos/farmacología , Tamaño de la Partícula , Polimerizacion , Pirazoles/química , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Taurina/química , Taurina/análogos & derivados , Taurina/farmacología
11.
ACS Appl Mater Interfaces ; 16(17): 22217-22228, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639367

RESUMEN

Organic memristors as promising electronic units are attracting significant attention owing to their simplicity of molecular structure design. However, fabricating high-quality organic films via novel synthetic technologies and exploring unprecedented chemical structures to achieve excellent memory performance in organic memristor devices are highly challenging. In this work, we report a cathodic electropolymerization to synthesize an ionic azulene-based memristive film (PPMAz-Py+Br-) under the molecular-potential and redox coregulation. During the cathodic electropolymerization process, electropositive pyridinium salts migrate to the cathode under an electric field, undergo a reduction-coupling deprotonation reaction, and polymerize into a uniform film with a controllable thickness on the electrode surface. The prepared Al/PPMAz-Py+Br-/ITO devices not only exhibit a high ON/OFF ratio of 1.8 × 103, high stability, long memory retention, and endurance under a wide range of voltage scans, but also achieve excellent multilevel storage and history-dependent memristive performance. In addition, the devices can mimic important biosynaptic functions, such as learning/forgetting function, synaptic enhancement/inhibition, paired-pulse facilitation/depression, and spiking-rate-dependent plasticity. The tunable memristive performances are attributed to the capture of free electrons on pyridinium cations, the migration of the aluminum ions (Al3+), and the form of Al conductive filaments under voltage scans.

12.
ACS Appl Mater Interfaces ; 16(17): 22571-22579, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640486

RESUMEN

Conducting polymer (CP)-based supercapacitors show great promise for applications in the field of wearable and portable electronics. However, these supercapacitors face persistent challenges, notably low energy density and inadequate stability. In this study, we introduce a polythiophene derivative, designated as poly(EPE), synthesized via the electrochemical polymerization of 8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (EPE). The resulting poly(EPE) polymer exhibits an exemplary 3D porous network-like structure, significantly enhancing its capacitance performance. When employed as the electrode material, the symmetric supercapacitor demonstrates an exceptionally high specific capacitance of 1342 F g-1 at a current density of 4.0 A g-1, along with impressive energy and power densities of 119.3 W h kg-1 and 38.83 kW kg-1, respectively. These capacitance values surpass those of previously reported pristine CP-based supercapacitors. Notably, the supercapacitor showcases outstanding stability, maintaining a retention rate of 92.5% even after 50,000 charge-discharge cycles. These findings underscore the substantial potential of poly(EPE) as an electrode material for the advancement of the supercapacitor technology.

13.
Chemosphere ; 357: 141981, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626813

RESUMEN

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Asunto(s)
Aluminio , Cloranfenicol , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Polímeros , Contaminantes Químicos del Agua , Cloranfenicol/análisis , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/análisis , Aluminio/análisis , Aluminio/química , Polímeros/química , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Antibacterianos/análisis , Electrodos , Ríos/química , Lagos/química , Lagos/análisis
14.
Mikrochim Acta ; 191(5): 230, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565804

RESUMEN

A novel molecularly imprinted electrochemical sensor is presented based on one-dimensional ultrathin manganese oxide nanowires/two-dimensional molybdenum titanium carbide MXene (MnO2NWs@Mo2TiC2 MXene) for fenitrothion (FEN) determination. After the synthesis of MnO2NWs@Mo2TiC2 MXene ionic nanocomposite was successfully completed with a facile hydrothermal and the pillaring methods, a new type molecular imprinted electrochemical sensor based on MnO2NWs@Mo2TiC2 MXene was constructed with cyclic voltammetry (CV) polymerization including pyrrole monomer and FEN target molecule. After the characterization studies including spectroscopic, electrochemical and microscopic methods, the analytical applications of the prepared sensor were performed. A linearity of 1.0×10-9-2.0×10-8 mol L-1 was obtained and the values of the quantification limit (LOQ) and the detection limit (LOD) were 1.0×10-9 mol L-1 and 3.0×10-10 mol L-1, respectively. The studies of selectivity, stability and reproducibility of the constructed sensor based on MnO2NWs@Mo2TiC2 nanocomposite and molecularly imprinting polymer (MIP) were carried out in detail. Finally, the developed sensor was applied to white flour samples with the values close to 100%.

15.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630200

RESUMEN

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Asunto(s)
Ácidos Borónicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Electrodos , Guanina , Metacrilatos
16.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543403

RESUMEN

In this study, we present a 5,8-bis(3,4-ethylenedioxythiophene)quinoxaline monomer with two 4-(octyloxy)phenyl side chains (EDOTPQ) that can be electropolymerized on ITO glass in standard electrolytes containing lithium salts and propylene carbonate as solvent. The electrochemically deposited PEDOTPQ layers show very good adhesion and homogeneity on ITO. The green-colored polymer thin films exhibit promising electrochromic (EC) properties and are interesting for applications such as adaptive camouflage, as well as smart displays, labels, and sensors. Novel organic-inorganic (hybrid) EC cell configurations were realized with Prussian blue (PB) or titanium-vanadium oxide (TiVOx) as ion storage electrodes, showing a highly reversible and fast color change from green to light yellow.

17.
Talanta ; 273: 125855, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461643

RESUMEN

Screening for illegal use of glucocorticoids (GCs) in cosmetics by electrochemical methods is extremely challenging due to the poor electrochemical activity of GCs. In this study, poly-L-Serine/poly-Taurine modified electrode (P(Tau)/P(L-Ser)/GCE) was prepared for sensitive and direct determination of betamethasone in cosmetics by a simple two-step in situ electropolymerization reaction. The relevant parameters of preparation and electroanalytical conditions were respectively studied, including the concentration of polymerization solution, the number of scanning circles and the scanning rate. The SEM and EDS mapping demonstrated successful preparation of P(Tau)/P(L-Ser)/GCE. The electro-catalytic properties of the obtained electrodes were investigated using cyclic voltammetry and differential pulse voltammetry methods, showing a remarkable improvement of sensitivity for the detection of betamethasone due to the synergic effect of both P(L-Ser) and P(Tau). In addition, we investigated the electrochemical reduction of betamethasone on the surface of modified electrode. It was found that the process was controlled by diffusion effect and involved the transfer of two electrons and two protons. Then the electrochemical sensor method based on P(Tau)/P(L-Ser)/GCE was established and delivered a linear response to betamethasone concentration from 0.5 to 20 µg mL-1 with a limit of detection of 32.2 ng mL-1, with excellent recoveries (98.1%-106.8%) and relative standard deviations (<4.8%). Furthermore, the established electrochemical sensor method was compared with conventional HPLC method. The results showed that both of them were comparable. Moreover, the established electrochemical sensor method was with the merits of short analysis time, environmentally friendly, low cost and easy to achieve in-site detection.


Asunto(s)
Aminoácidos , Betametasona , Polimerizacion , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
18.
Talanta ; 273: 125866, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490025

RESUMEN

The global increase in population aging has led to a rise in neurodegenerative diseases (NDs), posing significant challenges to public health. Developing selective and specific biomarkers for early diagnosis and drug development is crucial addressing the growing burden of NDs. In this context, the RNA-binding protein TDP-43 has emerged as a promising biomarker for amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and TDP-43-associated proteinopathies. However, existing detection methods suffer from limitations such as cost, complexity, and operator dependence. Here, we present a novel electrochemical biosensor integrated into a lab-on-chip (LoC) platform to detect TDP-43. The sensor utilizes electrosynthesized polypyrrole derivatives with carboxylic groups for transducer functionalization, enabling targeted immobilization of TDP-43 antibodies. Differential pulsed voltammetry (DPV) is used for the indirect detection and quantification of TDP-43. The chip exhibits rapid response, good reproducibility, a linear detection range, and sensitivity from 0.01 ng/mL to 25 ng/mL of TDP-43 protein concentration with a LOD = 10 pg/mL. Furthermore, successful TDP-43 detection in complex matrices like serum of ALS patients and healthy individuals demonstrates its potential as a point-of-care diagnostic device. This electrochemical biosensor integrated into a chip offers good sensitivity, rapid response, and robust performance, providing a promising avenue for advancing neurodegenerative disease diagnostics and therapeutic development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Técnicas Biosensibles , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Polímeros , Reproducibilidad de los Resultados , Inmunoensayo , Pirroles , Proteínas de Unión al ADN/metabolismo , Biomarcadores/metabolismo
19.
Adv Sci (Weinh) ; 11(27): e2308281, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520718

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa , Polímeros , Polímeros/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
20.
Macromol Rapid Commun ; 45(11): e2300744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480512

RESUMEN

Highly porous light absorbers are fabricated based on polypyrrole (PPy)-coated carbon nanotube (CNT). Carbon nanotube sponge (CNTS) or carbon nanotube array (CNTA) with three-dimensional (3D) network structure is the framework of porous light absorbers. Both PPy@CNTS and PPy@CNTA composites exhibit excellent light absorption of the full solar spectrum. The CNTS and CNTA with porous structures have extremely large effective surface area for light absorption and for water evaporation that has great practical benefit to the solar-driven vapor generation. The PPy layer on CNT sidewalls significantly improves the hydrophilicity of porous CNTS and CNTA. The good wettability of water on CNT sidewalls makes water transport in porous CNT materials highly efficient. The PPy@CNTS and PPy@CNTA light absorbers achieve high water evaporation rates of 3.35 and 3.41 kg m-2 h-1, respectively, under 1-sun radiation. The orientation of nano channels in CNTA-based light absorbers also plays an important role in the solar-driven vapor generation. The water transport and vapor escape are more efficient in CNTA-based light absorbers as compared to the CNTS-based light absorbers due to the relatively short path for the water transport and the vapor escape in CNTA-based light absorbers.


Asunto(s)
Nanotubos de Carbono , Polímeros , Pirroles , Nanotubos de Carbono/química , Polímeros/química , Pirroles/química , Energía Solar , Luz Solar , Porosidad , Agua/química , Propiedades de Superficie , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA