Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.705
Filtrar
1.
Dev Dyn ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096177

RESUMEN

BACKGROUND: Early embryonic aortic arches (AA) are a dynamic vascular structures that are in the process of shaping into the great arteries of cardiovascular system. Previously, a time-lapsed mechanosensitive gene expression map was established for AA subject to altered mechanical loads in the avian embryo. To validate this map, we investigated effects on vascular microstructure and material properties following the perturbation of key genes using an in-house microvascular gene knockdown system. RESULTS: All siRNA vectors show a decrease in the expression intensity of desired genes with no significant differences between vectors. In TGFß3 knockdowns, we found a reduction in expression intensities of TGFß3 (≤76%) and its downstream targets such as ELN (≤99.6%), Fbn1 (≤60%), COL1 (≤52%) and COL3 (≤86%) and an increase of diameter in the left AA (23%). MMP2 knockdown also reduced expression levels in MMP2 (≤30%) and a 6-fold increase in its downstream target COL3 with a decrease in stiffness of the AA wall and an increase in the diameter of the AA (55%). These in vivo measurements were confirmed using immunohistochemistry, western blotting and a computational growth model of the vascular extracellular matrix (ECM). CONCLUSIONS: Localized spatial genetic modification of the aortic arch region governs the vascular phenotype and ECM composition of the embryo and can be integrated with mechanically-induced congenital heart disease models.

2.
Front Bioeng Biotechnol ; 12: 1430637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050682

RESUMEN

Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.

3.
BMC Urol ; 24(1): 151, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054460

RESUMEN

INTRODUCTION: Radiation Therapy and IRreversible Electroporation for Intermediate Risk Prostate Cancer (RTIRE) is a phase II clinical trial testing combination of radiation therapy and irreversible electroporation for intermediate risk prostate cancer BACKGROUND: PCa is the most common non-cutaneous cancer in men and the second leading cause of cancer death in men. PCa treatment is associated with long term side effects including urinary, sexual, and bowel dysfunction. Management of PCa is based on risk stratification to prevent its overtreatment and associated treatment-related toxicity. There is increasing interest in novel treatment strategies, such as focal therapy, to minimize treatment associated morbidity. Focal therapy alone has yet to be included in mainstream guidelines, given ongoing concerns with potentially higher risk of recurrence. We hypothesize combining focal therapy with whole gland, reduced dose radiotherapy will provide acceptable oncologic efficacy with minimal treatment associated morbidity. RTIRE is a phase II single institution, investigator-initiated study combining a local ablative technique though local irreversible electroporation (IRE) with MR guided RT (MRgRT) to treat the entire prostate. The goal is to provide excellent oncologic outcomes and minimize treatment related side effects through leveraging benefits of locally ablative therapy with established radiation treatment techniques. METHODS: A total of 42 men with intermediate risk PCa per NCCN guidelines and focal grade group (GG) 2 or 3, Gleason Score (GS) 3 + 4 or GS 4 + 3, cancer in an MRI target will be enrolled. Patients with MRI visible foci of GG2/GG3 will undergo focal therapy with IRE of this lesion. Following successful focal therapy, patients will then undergo a course of reduced dose, whole gland MRgRT with either 32.5 Gy in 5 Fractions or 22 Gy in 2 fractions. The primary objective of the study is to determine safety. Secondary outcomes include evaluation of oncologic efficacy (as measured by the proportion of patients free of clinically significant cancer as defined as > Grade Group 1 at 1-year follow-up biopsy), imaging characteristics of patients pre and post RTIRE, impact on quality of life (QoL), and PSA kinetics. DISCUSSION: Combining IRE with a reduced dose radiotherapy may offer a new treatment paradigm for PCa by both reducing treatment effects of full dose radiotherapy and minimizing the risk of recurrence observed with focal therapy. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT05345444. Date of registration: April 25, 2022. PROTOCOL VERSION: 6.0, July 7, 2023.


Asunto(s)
Electroporación , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/radioterapia , Electroporación/métodos , Medición de Riesgo , Terapia Combinada , Ensayos Clínicos Fase II como Asunto , Radioterapia Guiada por Imagen/métodos
4.
J Fungi (Basel) ; 10(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057362

RESUMEN

Routine molecular manipulation of any organism is inefficient and difficult without the existence of a plasmid. Although transformation is possible in C. auris, no plasmids are available that can serve as cloning or shuttle vectors. C. auris centromeres have been well characterized but have not been explored further as molecular tools. We tested C. auris centromeric sequences to identify which, if any, could be used to create a plasmid that was stably maintained after transformation. We cloned all seven C. auris centromeric sequences and tested them for transformation frequency and stability. Transformation frequency varied significantly; however, one was found to transform at a very high frequency. A 1.7 Kb subclone of this sequence was used to construct a shuttle vector. The vector was stable with selection and maintained at ~1 copy per cell but could be easily lost when selection was removed, which suggested that the properties of the centromeric sequence were more Autonomously Replicating Sequence (ARS)-like than centromere-like when part of a plasmid. Rescue of this plasmid from transformed C. auris cells into E. coli revealed that it remained intact after the initial C. auris transformation, even when carrying large inserts. The plasmid was found to be able to transform all four clades of C. auris, with varying frequencies. This plasmid is an important new reagent in the C. auris molecular toolbox, which will enhance the investigation of this human fungal pathogen.

5.
Electromagn Biol Med ; 43(3): 187-203, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38990565

RESUMEN

To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.


In our research, we've introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It's designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we've extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.


Asunto(s)
Potenciales de Acción , Modelos Biológicos , Electroporación , Supervivencia Celular/efectos de la radiación , Electricidad , Humanos
6.
ACS Appl Mater Interfaces ; 16(28): 36063-36076, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958208

RESUMEN

The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10-40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.


Asunto(s)
Electroporación , Electroporación/métodos , Humanos , Membrana Celular/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-39004800

RESUMEN

INTRODUCTION: The VARIPULSE™ variable-loop circular catheter (VLCC) is a bidirectional, multielectrode catheter that can perform electrophysiological mapping and deliver pulsed field energy through the TRUPULSE™ Generator for the treatment of atrial fibrillation. This ablation system, including the CARTO 3™ three-dimensional electroanatomical mapping system, represents a fully integrated system. METHODS: Pulsed field ablation (PFA) is a novel, primarily cardiac tissue-selective ablation technology with a minimal thermal effect, potentially eliminating the collateral tissue damage associated with radiofrequency ablation or cryoablation. Integration of a mapping system may lead to shorter fluoroscopy times and improve the usability of the system, allowing tracking of energy density and placement to confirm no areas around the vein are left untreated. RESULTS: This step-by-step review covers patient selection, mapping, the step-by-step ablation workflow, details on catheter repositioning and ensuring contact, considerations for ablation of specific anatomical variations, and discussion of ablation without fluoroscopy based on our initial clinical experience. CONCLUSIONS: The VLCC is part of the fully integrated PFA system designed for pulmonary vein isolation, using mapping to guide catheter placement and lesion set creation. The current workflow, which is based on our initial clinical experience, may be further refined as the PFA system is used in real-world settings.

8.
Elife ; 122024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990761

RESUMEN

Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.


Asunto(s)
Dendritas , Sinapsis , Corteza Visual , Animales , Dendritas/fisiología , Sinapsis/fisiología , Ratones , Corteza Visual/fisiología , Corteza Visual/crecimiento & desarrollo , Técnicas de Placa-Clamp , Ratones Endogámicos C57BL
9.
Semin Intervent Radiol ; 41(2): 176-219, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38993594

RESUMEN

Since no uniform treatment protocol for pancreatic irreversible electroporation (IRE) exists, the heterogeneity throughout literature complicates the comparison of results. To reach agreement among experts, a consensus study was performed. Eleven experts, recruited according to predefined criteria regarding previous IRE publications, participated anonymously in three rounds of questionnaires according to a modified Delphi technique. Consensus was defined as having reached ≥80% agreement. Response rates were 100, 64, and 64% in rounds 1 to 3, respectively; consensus was reached in 93%. Pancreatic IRE should be considered for stage III pancreatic cancer and inoperable recurrent disease after previous local treatment. Absolute contraindications are ventricular arrhythmias, implantable stimulation devices, congestive heart failure NYHA class 4, and severe ascites. The inter-electrode distance should be 10 to 20 mm and the exposure length should be 15 mm. After 10 test pulses, 90 treatment pulses of 1,500 V/cm should be delivered continuously, with a 90-µs pulse length. The first postprocedural contrast-enhanced computed tomography should take place 1 month post-IRE, and then every 3 months. This article provides expert recommendations regarding patient selection, procedure, and follow-up for IRE treatment in pancreatic malignancies through a modified Delphi consensus study. Future studies should define the maximum tumor diameter, response evaluation criteria, and the optimal number of preoperative FOLFIRINOX cycles.

10.
J Clin Med ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999394

RESUMEN

Electroporation with chemotherapy (ECT) is currently offered as a treatment in Europe for locoregional or metastatic melanoma with cutaneous lesions. However, the role of surgery and other forms of electroporation in melanoma requires further evaluation. Two reviewers used two databases to conduct a literature search and review, and 51 publications related to electroporation with chemotherapy, immunotherapy, or gene delivery were found. ECT appears to be effective in reducing tumor burden for surgical resection, replacing surgical intervention with evidence of complete regression in some lesions, and inducing both local and systemic immune effects. These immune effects are pronounced when ECT is combined with immunotherapy, with a statistically significant improvement in overall survival (OS). Other forms of electroporation, such as those using calcium chloride, an IL-12 plasmid, and vaccination, require further study. However, IL-12 plasmid electroporation may be inferior to ECT based on the evidence available. Furthermore, irradiation of the tumor prior to ECT treatment is negatively correlated with local response. Access to ECT is restricted in the US and requires further evaluation. More randomized controlled trials of ECT and electroporation treatment in locoregional melanoma are recommended.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39010831

RESUMEN

Pulsed-field ablation (PFA) is an emerging ablative technology that has been used successfully to eliminate cardiac arrhythmias. As a non-thermal technique it has significant benefits over traditional radio-frequency ablation with improved target tissue specificity and reduced risk of adverse events during cardiac applications. We investigated whether PFA is safe for use in the stomach and whether it could modulate gastric slow waves. Female weaner pigs were fasted overnight before anesthesia was induced using tiletamine hydrochloride (50 mg mL-1) and zolazepam hydrochloride (50 mg mL-1) and maintained with propofol (Diprivan 2%, 0.2­0.4 mg kg­1 min­1). Pulsed-field ablation was performed on their gastric serosa in vivo. Adjacent point lesions (n=2-4) were used to create a linear injury using bipolar pulsed-field ablation consisting of 40 pulses (10 Hz frequency, 0.1 ms pulse width, 1000 V amplitude). High-resolution electrical mapping defined baseline and post-ablation gastric slow-wave patterns. A validated five-point scale was used to evaluate tissue damage in hematoxylin and eosin stained images. Results indicated that PFA successfully induced complete conduction blocks in all cases, with lesions through the entire thickness of the gastric muscle layers. Consistent post-ablation slow-wave patterns emerged immediately following ablation and persisted over the study period. Pulsed-field ablation induces rapid conduction blocks as a tool to modulate slow-wave patterns, indicating it may be suitable as an alternative to radio-frequency ablation.

12.
Bioeng Transl Med ; 9(4): e10662, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036075

RESUMEN

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.

13.
World J Mens Health ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39028129

RESUMEN

PURPOSE: Irreversible electroporation (IRE) is a promising alternative treatment for low-intermediate-risk localized prostate cancer. In this systematic review we aim to evaluate the safety profile and functional and oncological outcomes of this new technique. MATERIALS AND METHODS: A systematic review of the literature was performed on PubMed, EMBASE, and Scopus up to 24 August 2023. Nineteen studies were analyzed, including 12 prospective studies and 7 retrospective studies. A total of 1,452 patients underwent IRE as the sole primary treatment modality. RESULTS: The in-field clinically significant prostate cancer rate was reported between 0%-15.6% in the repeat biopsy. The retreatment rate was reported from 8% to 36.6%. The 3 years failure-free survival was presented between 90%-96.8%. The post-operative pad-free rate ranged between 96.7%-100%. Greater heterogeneity exists considering the change in erectile function. The most common reported complications were urinary tract infection and hematuria. Major complications were rare. CONCLUSIONS: These results underline that IRE achieves favorable oncological control with an excellent safety profile, in the meantime preserving patients' urinary and erectile function.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38997610

RESUMEN

INTRODUCTION: Pulsed-field energy (PFA) and very high-power short-duration radiofrequency (vHPSD-RF) are two novel ablation methods for pulmonary vein isolation (PVI). Both PFA and vHPSD-RF show promise for improving efficacy, safety, and reducing procedure durations. However, direct comparisons between these two techniques are scarce. METHODS AND RESULTS: Retrospective analysis of 82 patients with symptomatic AF. Of these, 52 patients received PFA and 30 received vHPSD-RF (90 W, 4 s) as index procedure. At the 6-month follow-up, AF recurrence occurred in 4 patients following PFA and 5 patients following vHPSD-RF (p-value = 0.138). Significant improvements in the EHRA and NYHA stages were evident in both PFA (p < 0.001 and p = 0.047, respectively) and vHPSD-RF groups (p = 0.007 and p = 0.012, respectively). The total procedure duration and the left atrial dwell time were significantly shorter in the PFA group (64 ± 19 min vs. 99 ± 32 min, p < 0.001 and 41 ± 12 min vs. 62 ± 29 min, p < 0.001, respectively). The fluoroscopy time and dose area product were significantly higher in PFA (14 ± 6 vs. 9 ± 5 min, p < 0.001 and 14 ± 9 vs. 11 ± 9 Gy cm2, p = 0.046, respectively). One patient in the vHPSD-RF group suffered a stroke, not directly linked to the procedure (0 vs. 1 major complication, p = 0.366). CONCLUSION: Based on this retrospective single-center study, PFA and vHPSD-RF were associated with similar effectiveness and safety profiles. PFA was linked to shorter procedure times and higher radiation exposure compared to vHPSD-RF.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124758, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38963945

RESUMEN

In this study, electroporation-surface-enhanced Raman scattering (SERS) was applied to rapidly measure intracellular pH. The generation of a sensitive SERS probe for measuring pH in the range of 6.0-8.0 was accomplished through the conjugation of the pH-sensitive molecule 4-mercaptobenzoic acid (4-MBA) to the surface of gold nanoparticles (Au NPs) through its thiol functional group. This bioprobe was then rapidly introduced into nasopharyngeal carcinoma CNE-1 cells by electroporation, followed by SERS scanning and the fitting of intensity ratios of each detection point's Raman peaks at 1423 cm-1 and 1072 cm-1, to create the pH distribution map of CNE-1 cells. The electroporation-SERS assay introduces pH bioprobes into a living cell in a very short time and disperses the nanoprobe throughout the cytoplasm, ultimately enabling rapid and comprehensive pH analysis of the entire cell. Our work demonstrates the potential of electroporation-SERS for the biochemical analysis of live cells.

16.
Pharmaceutics ; 16(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39065548

RESUMEN

The combination of nanosecond Pulsed Electric Field (nsPEF) with pharmaceuticals is a pioneering therapeutic method capable of enhancing drug uptake efficacy in cells. Utilizing nsPEFs configured at 400 pulses, an electric field strength of 15 kV/cm, a pulse duration of 100 ns, and a repetition rate of 10 pulses per second (PPS), we combined the nsPEF with a low dose of doxorubicin (DOX) at 0.5 µM. Upon verifying that cells could continuously internalize DOX from the surrounding medium within 1 h post nsPEF exposure, we set the DOX exposure period to 10 min and contrasted the outcomes of varying sequences of DOX and nsPEF administration: pulsing followed by DOX, DOX followed by pulsing, and DOX applied 40 min after pulsing. Flow cytometry, CCK-8 assays, and transmission electron microscopy (TEM) were employed to examine intracellular DOX accumulation, cell viability, apoptosis, cell cycle, and ultrastructural transformations. Our findings demonstrate that exposing cells to DOX 40 min subsequent to nsPEF treatment can effectively elevate intracellular DOX levels, decrease cell viability, and inhibit the cell cycle. This research work presents a novel approach to enhance DOX uptake efficiency with moderate conditions of both DOX and nsPEF.

17.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39065676

RESUMEN

Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines.

18.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39065755

RESUMEN

Uveal melanoma (UM) represents a rare tumor of the uveal tract and is associated with a poor prognosis due to the high risk of metastasis. Despite advances in the treatment of UM, the mortality rate remains high, dictating an urgent need for novel therapeutic strategies. The current study introduces the first in vivo analysis of the therapeutic potential of calcium electroporation (CaEP) compared with electrochemotherapy (ECT) with bleomycin in a patient-derived xenograft (PDX) model based on the chorioallantoic membrane (CAM) assay. The experiments were conducted as monotherapy with either 5 or 10 mM calcium chloride or 1 or 2.5 µg/mL bleomycin in combination with EP or EP alone. CaEP and ECT induced a similar reduction in proliferative activity, neovascularization, and melanocytic expansion. A dose-dependent effect of CaEP triggered a significant induction of necrosis, whereas ECT application of 1 µg/mL bleomycin resulted in a significantly increased apoptotic response compared with untreated tumor grafts. Our results outline the prospective use of CaEP and ECT with bleomycin as an adjuvant treatment of UM, facilitating adequate local tumor control and potentially an improvement in metastatic and overall survival rates.

19.
Micromachines (Basel) ; 15(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39064330

RESUMEN

In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.

20.
Anal Chim Acta ; 1316: 342864, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969411

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma arising from the nasopharyngeal mucosal lining. Diagnosis of NPC at early stage can improve the outcome of patients and facilitate reduction in cancer mortality. The most significant change between cancer cells and normal cells is the variation of cell nucleus. Therefore, accurately detecting the biochemical changes in nucleus between cancer cells and normal cells has great potential to explore diagnostic molecular markers for NPC. Highly sensitive surface-enhanced Raman scattering (SERS) could reflect the biochemical changes in the process of cell cancerization at the molecular level. However, rapid nuclear targeting SERS detection remains a challenge. RESULTS: A novel and accurate nuclear-targeting SERS detection method based on electroporation was proposed. With the assistance of electric pulses, nuclear-targeting nanoprobes were rapidly introduced into different NPC cells (including CNE1, CNE2, C666 cell lines) and normal nasopharyngeal epithelial cells (NP69 cell line), respectively. Under the action of nuclear localization signaling peptides (NLS), the nanoprobes entering cells were located to the nucleus, providing high-quality nuclear SERS signals. Hematoxylin and eosin (H&E) staining and in situ cell SERS imaging confirmed the excellent nuclear targeting performance of the nanoprobes developed in this study. The comparison of SERS signals indicated that there were subtle differences in the biochemical components between NPC cells and normal nasopharyngeal cells. Furthermore, SERS spectra combined with principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to diagnose and distinguish NPC cell samples, and high sensitivity, specificity, and accuracy were obtained in the screening of NPC cells from normal nasopharyngeal epithelial cells. SIGNIFICANCE: To the best of our knowledge, this is the first study that employing nuclear-targeting SERS testing to screen nasopharyngeal carcinoma cells. Based on the electroporation technology, nanoprobes can be rapidly introduced into living cells for intracellular biochemical detection. Nuclear-targeting SERS detection can analyze the biochemical changes in the nucleus of cancer cells at the molecular level, which has great potential for early cancer screening and cytotoxicity analysis of anticancer drugs.


Asunto(s)
Núcleo Celular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patología , Núcleo Celular/química , Núcleo Celular/metabolismo , Línea Celular Tumoral , Propiedades de Superficie , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA