Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
J Environ Manage ; 366: 121909, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032249

RESUMEN

The use of fixed emission factors (EFs), combined with insufficient temporal distribution, leads to substantial uncertainties in current emission inventories for India, the world's second-largest producer and consumer of synthetic N-fertilizers. Our study aimed to improve the NH3 and N2O emission estimates by utilizing crop-specific district-level activity data and refined EFs tailored to Indian conditions. In this study, a comprehensive NH3 and N2O emission inventory (EI) is methodically developed at 0.1° * 0.1° spatial and monthly temporal resolution for the year 2018-19 considering 52 crops. The data for developing this inventory is aggregated through detailed field surveys, conducted across 102 districts of 14 states, and relevant government databases. EFs have been adjusted for the Indian context by refining them to reflect local conditions through consideration of ambient temperature, application rate, and other factors. Further, upon preparing an EI for FA, a spectrum of mitigation strategies are evaluated to assess their effectiveness in reducing emissions. Yearly total NH3 and N2O emissions amount to 3.15 Tg and 138.53 Gg, with urea fertilizer as the dominant contributor accounting for 93.85% and 96.44% of emissions, respectively. Key crops such as rice, wheat, maize, sugarcane, and cotton collectively represent approximately 82% of the total N consumption. The state of Uttar Pradesh emerges as the largest emitter, contributing 706.5 Gg and 25.31 Gg of NH3 and N2O emissions, respectively. Conversely, PB and HR exhibit the highest NH3 emissions per capita. Temporally, NH3 emissions peak in August, while N2O emissions peak in July, with both pollutants reaching their nadir in February. Among the array of mitigation strategies assessed in this study, 'adhering to recommended fertilizer doses' and 'incorporating urease inhibitors' demonstrated substantial potential for reducing emissions. The current study aids policymaking to mitigate the environmental and health impacts of atmospheric emissions from synthetic N-fertilizers. Future researchers can adopt this study as a benchmark to improve Indian FA emission estimates, which helps in promoting sustainable agricultural practices and contributes to climate change mitigation efforts.

2.
Sci Total Environ ; 948: 174760, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39025144

RESUMEN

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes. The derivation calculations are subject to high uncertainties, and substantial knowledge gaps remain regarding the relative importance of the unique pathways, territories, and periods. This publication presents a monitoring method designed to quantify the unique emission pathways of HS in large geographical areas characterized by differences in land use, population, and economic development. The method will be tested for a wide range of HS (ubiquitous organic and inorganic pollutants, pesticides, pharmaceuticals) throughout small sub-catchments located on tributaries. The results of the test application demonstrate a high diversity of both emission loads and instream concentrations throughout different regions for numerous substances. Riverine concentrations are found to be highly dependent on the flow status. Soil concentration levels of polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS) are found to be in proportion, whereas that of potentially toxic elements (PTE) in a reverse relationship with economic development. In many instances, concentration levels are also contingent upon land use. The findings of this study reinforce the necessity for the implementation of harmonised and concerted HS monitoring programmes, which should encompass a diverse range of substances, emission sources, pathways and geographical areas. This is essential for the reliable development of emission factors.

3.
Sci Total Environ ; 946: 173734, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857805

RESUMEN

Seasonal and daily variations of gaseous emissions from naturally ventilated dairy cattle barns are important figures for the establishment of effective and specific mitigation plans. The present study aimed to measure methane (CH4) and ammonia (NH3) emissions in three naturally ventilated dairy cattle barns covering the four seasons for two consecutive years. In each barn, air samples from five indoor locations were drawn by a multipoint sampler to a photoacoustic infrared multigas monitor, along with temperature and relative humidity. Milk production data were also recorded. Results showed seasonal differences for CH4 and NH3 emissions in the three barns with no clear trends within years. Globally, diel CH4 emissions increased in the daytime with high intra-hour variability. The average hourly CH4 emissions (g h-1 livestock unit-1 (LU)) varied from 8.1 to 11.2 and 6.2 to 20.3 in the dairy barn 1, from 10.1 to 31.4 and 10.9 to 22.8 in the dairy barn 2, and from 1.5 to 8.2 and 13.1 to 22.1 in the dairy barn 3, respectively, in years 1 and 2. Diel NH3 emissions highly varied within hours and increased in the daytime. The average hourly NH3 emissions (g h-1 LU-1) varied from 0.78 to 1.56 and 0.50 to 1.38 in the dairy barn 1, from 1.04 to 3.40 and 0.93 to 1.98 in the dairy barn 2, and from 0.66 to 1.32 and 1.67 to 1.73 in the dairy barn 3, respectively, in years 1 and 2. Moreover, the emission factors of CH4 and NH3 were 309.5 and 30.6 (g day-1 LU-1), respectively, for naturally ventilated dairy cattle barns. Overall, this study provided a detailed characterization of seasonal and daily gaseous emissions variations highlighting the need for future longitudinal emission studies and identifying an opportunity to better adequate the existing mitigation strategies according to season and daytime.


Asunto(s)
Contaminación del Aire , Amoníaco , Metano , Metano/análisis , Amoníaco/análisis , Contaminación del Aire/estadística & datos numéricos , Crianza de Animales Domésticos , Bovinos , Animales , Monitoreo del Ambiente , Región Mediterránea , Estaciones del Año , Clima
4.
Environ Pollut ; 351: 124047, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688386

RESUMEN

The application of numeric modelling for determining the impact of landfills needs for reliable emission source data. In this study, a methodology for the characterization of the emission profiles of the different sources present in landfills for emission factors determination, applying an indirect methodology, is presented. Ambient air concentrations of volatile organic compounds (VOCs), hydrogen sulphide (H2S) and ammonia (NH3) were determined in three potentially emission sources in Can Mata landfill (Hostalets de Pierola, Catalonia, Spain): dumping areas, pre-closed zone and leachate reservoir as well as in biogas, for the determination of emission factors. Multi-sorbent bed and Tenax TA tubes were used for a wide range of VOCs sampling, and analysis was conducted through TD-GC/MS. H2S and NH3 were sampled and analysed using Radiello passive samplers. The highest total VOC (TVOC) concentrations were found in dumping areas (0.7-3.5 mg m-3), followed by leachate reservoir (0.3-0.6 mg m-3) and pre-closed area (77-165 µg m-3). On the other hand, the highest H2S and NH3 concentrations were found in leachate reservoir, presenting values of 0.8-1.1 mg m-3 and 1.7-1.8 mg m-3, respectively. With the application of odour thresholds to the concentrations obtained, the most critical compounds regarding odour annoyances were determined. The highest odour units (O.U.) were found in leachate reservoir due to H2S concentrations, whereas VOCs contributed mainly to O.U. in the dumping areas. The obtained ambient air concentrations were used for the indirect determination of the emission factors through numerical modelling using a Eulerian dispersion model. The emission factors obtained for the landfill for TVOC, H2S and NH3 were in the range of 0.44-10.9 g s-1, 0.16-1.02 g s-1 and 0.23-1.82 g s-1, respectively, depending on the emission source. Reliable emission factors are crucial to obtain landfill impact maps, which are essential for the correct management of these facilities.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Monitoreo del Ambiente , Sulfuro de Hidrógeno , Compuestos Orgánicos Volátiles , Instalaciones de Eliminación de Residuos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Amoníaco/análisis , Sulfuro de Hidrógeno/análisis , España , Contaminación del Aire/estadística & datos numéricos , Modelos Teóricos
5.
Sci Total Environ ; 927: 172183, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575016

RESUMEN

Controlling volatile organic compounds (VOCs) emitted from the automobile manufacturing industry requires establishing VOCs emission factors (EFs) and source profiles refinedly. In this study, 41 samples involved 32 VOCs discharge links were collected from three factories. The EFs and VOCs source profiles were estimated by the material balance method and weighted average method, respectively. The ozone formation potential (OFP) of the 110 VOCs species were calculated by the maximum incremental reactivity (MIR). According to estimations, the ranges of EFs were 0.23-1.66 kg VOCs/SUV car and 2.14-14.86 g VOCs/m2 painted area. EFs of six materials were firstly estimated, which are electrophoretic primer (152.31 ± 97.39 g VOCs/SUV car, 0.97 ± 0.38 g VOCs/m2 painted area), sealant (48.39 ± 26.20 g VOCs/SUV car, 0.46 ± 0.25 g VOCs/m2 painted area), floating coat (87.40 ± 75.63 g VOCs/SUV car, 0.86 ± 0.74 g VOCs/m2 painted area), colored paint (127.24 ± 168.24 g VOCs/SUV car, 1.25 ± 1.66 g VOCs/m2 painted area), varnish (205.46 ± 218.14 g VOCs/SUV car, 2.01 ± 2.15 g VOCs/m2 painted area), and cleaning solvent (328.54 ± 404.94 g VOCs/SUV car, 3.23 ± 3.98 g VOCs/m2 painted area). OVOCs (37.40-51.60 %) and aromatics (36.40-37.00 %) were the dominant components. n-Butyl acetate, 1,2,4-trimethylbenzene, undecane, n-hexanal, acetone, 1,2,3-trimethylbenzene, 1,3,5 -trimethylbenzene, m/p/o-xylene, 3-ethylbenzene, and 4-ethylbenzene were the major VOCs species, accounting for 68 % of total VOCs in the automobile manufacturing industry. Considering the OFP values of species, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene, m/p-xylene, acetaldehyde, methyl ethyl ketone are the key active species that should be prioritized for control.

6.
Sci Total Environ ; 930: 172733, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663608

RESUMEN

In the context of clean air actions in China, vehicle emission limits have been continuously tightened, which has facilitated the reduction of volatile organic compounds (VOCs) emissions. However, the characteristics of VOC emissions from vehicles with strict emission limits are poorly understood. This study investigated the VOC emission characteristics from vehicles under the latest standards based on tunnel measurements, and identified future control strategies for vehicle emissions. The results showed that the highest percentage of VOCs from vehicle consisted of alkanes (80.9 %), followed by aromatics (15.8 %) and alkenes (3.1 %). Alkanes had the most significant ozone formation potential due to their high concentrations, in contrast to the aromatics that have been dominant in previous studies. The measured fleet-average VOC emission factor was 71.3 mg·km-1, including tailpipe emissions of 39.6 mg·km-1 and evaporative emissions of 31.7 mg·km-1. The VOC emission factors of the subgroups were obtained. The emission of evaporated VOCs accounted for 44.5 % of the total vehicle VOC emissions, which have increased substantially from previous studies. In addition, the emission characteristics of vehicles that are under the latest emission threshold values have changed significantly, and the mixing ratio of toluene/benzene (T/B) has been updated to 3:1. This study updates the VOCs emission factors of vehicles under clean air actions and highlights the future mitigation policies should focus on reducing evaporative VOC emissions.

7.
Sci Total Environ ; 923: 171467, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447721

RESUMEN

Ammonia, a significant precursor for secondary inorganic aerosols, plays a pivotal role in new particle formation. Inventories and source apportionment studies have identified vehicular exhaust as a primary source of atmospheric ammonia in urban regions. Existing research on the factors influencing ammonia emissions from gasoline vehicles exhibits substantial inconsistencies in both test results and analyses. The lack of a uniform pattern in ammonia emissions across different standard vehicles and the significant overlap in test results across diverse operational conditions highlight the complexities in this field of study. While individual results can be interpreted through a mechanistic lens, disparate studies often lack a common explanatory framework. To address this gap, our study leverages the robust and comprehensive approach of meta-analysis to reconcile these inconsistencies and provide a more precise understanding of the factors influencing ammonia emissions from gasoline vehicles. A large number (N = 537) of ammonia emission factors were extracted after screening >1628 publications. The combined ammonia emission factor was 23.57 ± 24.94 mg/km. Emission standards, engine type, ambient temperatures, mileage, vehicle speed, and engine displacement have a significant impact on ammonia emission factors, explaining the ammonia emission factor by up to 50.63 %, with speed being the most significant factor. All these factors are attributed to the interplay of catalyst properties, lambda, and residence time (space velocity). In the current fleet, ammonia emission control is relatively insufficient under low-speed and ultra-high speed, low temperature, and ultra-high mileage conditions. Since ammonia emission factors do not monotonically decrease with the upgrading of motor vehicle emission standards, it is called for the addition of ammonia emission factors indicators in motor vehicle emission standards, and stipulation of targeted testing procedures and testing instruments.

8.
Environ Int ; 186: 108590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521045

RESUMEN

As the dominant waste disposal process, incineration is regarded as the main incentive for the "not-in-my-backyard" syndrome, and faces an inescapable pressures of ultra-low emissions (ULE). Establishing precise response relationships between emission factors (EFs) and full-process influencing factors can provide guidance for the synergistic mitigation of flue gas pollutants (FGPs). In this work, the multi-dimensional EFs of FGPs were identified by initially integrating FGPs concentration monitoring data of existing 1,226 processing lines in China, technologies applied and operational experience (OE), local economic and political characteristics. Significant regional imbalance performance was observed, which EFs in the coastal regions were 3.55-92.39 % lower than those of the inland areas. NOx, SO2, HCl were identified as critical components requiring further reduction under the ULE standards, with exceedance rates recorded at 73.07 %, 38.90 %, and 56.69 %, respectively. An indicative value of 20 mg/m3 for PM is recommended for the control of heavy metals of Cd + Tl and Sb + As + Pb + Cr + Co + Cu + Mn + Ni based on the correlation coefficients of r = 0.28 (p < 0.001) and r = 0.20 (p = 0.002), respectively. Waste composition and OE were quantified as the main contributors of EFs' disparities by the tree-branching controlled variable approach established in this study. Predictive models for FGPs control process and corresponding EFs were constructed. EFs of nine FGPs in 2030 would decrease by 0.97-65.42 %, due to more complex purification processes employed to meet ULE's limitations, such as the application of five-stage processes growing from 45.60 % to 58.28 %. While regional imbalance in EFs-SO2 and EFs-HCl were extended with increases from 25.83 % to 33.07 % and 9.91 % to 32.32 %, respectively, due to the consistent disparities of OE and growing heterogeneity of control policies. Enhancing interregional empirical exchanges, reducing the regional market monopolies, and formulating technical guidelines would be beneficial to synergize the reduction of FGPs emissions and alleviate regional imbalance.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Incineración , Contaminantes Atmosféricos/análisis , China , Contaminación del Aire/prevención & control , Metales Pesados/análisis , Gases
9.
Sci Total Environ ; 927: 171930, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537827

RESUMEN

Consistent methods are essential for generating country and region-specific estimates of greenhouse gas (GHG) emissions used for reporting and policymaking. The estimates of direct N2O emissions from U.S. agricultural soils have primarily relied on the use of emission factors (EFs, Tier-1) and process-based models (Tier-3). However, Tier-1 estimates are relatively crude while Tier-3 calculations can be costly. This work addressed this gap by developing a Tier-2, regression-based approach by leveraging a meta-database containing 1883 field N2O observations together with environmental and management covariates from 139 studies. Our results estimated higher monthly soil N2O emissions (N2Om, kg N/ha) during the growing season (0.38) than the fallow period (0.15), highlighting the importance of considering measurement periods when utilizing meta-databases for analyzing N2O drivers. Significantly different N2Om were found for tillage practices (conventional > no-till: 0.42 > 0.27), fertilizer type (liquid > solid manure: 0.55 > 0.32), and soil texture (fine > coarse: 0.36 > 0.22). The comparisons of the influence of crop type and rotation, water management, and soil order on N2O emissions are complicated by regional data availability and interactions among different factors. Additionally, the finding that N2O emissions reported based on area (N2Om), N input rate (EF), or yield can alter treatment rankings underscores the need to establish transparent criteria for rewarding or discouraging regionally-based management practices using N2O metrics. Finally, we show how General Linear Models (GLMs) can be used to estimate country and regional Tier-2 N2Om using a suite of covariates. Our GLMs identified tillage, water management, N input type and rate, soil properties, and elevation as the most influential covariates for the conterminous U.S. The limited accuracy of regional-scale GLMs, however, suggests the need to further improve the quality and availability of GHG and covariate data through concerted efforts in data collection.

10.
J Environ Manage ; 356: 120552, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531128

RESUMEN

Partial replacement of mineral fertilisers (MF) with animal manures is a good alternative to reduce MF use and increase both nutrient cycling in agriculture and soil organic matter. However, the adoption of this practice must not lead to increased environmental impacts. In this two-year study conducted in an apple orchard, MF were partially replaced with various animal manures, including cattle slurry (CS), acidified cattle slurry (ACS), solid cattle manure (CsM), or poultry manure (PM), and their impacts on greenhouse gas emission (GHG: CO2, N2O and CH4) were examined. A control (CTRL) receiving only MF served as the baseline, representing the conventional scenario in orchard fertilisation. Overall, replacing MF with manures increased GHG emissions, with the magnitude of the impacts depending on the specific characteristics of the manures and the amount of nutrients and organic matter applied. Comparing to the CTRL, application of ACS and CS led to higher CH4 and N2O emissions, while PM application increased both N2O and CO2 emissions. In contrast, replacement with PM and CsM decreased CH4 emissions. Nevertheless, results varied between the two years, influenced by several factors, including soil conditions. While acidification showed potential to mitigate CH4 emissions, it also led to increased N2O emissions compared to CS, particularly in 2022, suggesting the need for further investigation to avoid emission trade-offs. Replacement with CS (20.49 t CO2-eq ha-1) and CsM (20.30 t CO2-eq ha-1) showed comparable global warming potential (GWP) to the conventional scenario (CTRL, 19.49 t CO2-eq ha-1), highlighting their potential as viable MF substitutes.


Asunto(s)
Malus , Estiércol , Animales , Bovinos , Fertilizantes , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo , Agricultura , Minerales , Aves de Corral , Metano
11.
Environ Sci Technol ; 58(9): 4268-4280, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38393751

RESUMEN

Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Anciano , Carbono , Biomasa , Monitoreo del Ambiente , Contaminación del Aire/análisis , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis
12.
Carbon Balance Manag ; 19(1): 4, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315265

RESUMEN

BACKGROUND: This article describes a new procedure to estimate the mean and variance of greenhouse gases (GHG) emission factors based on different, possibly conflicting, estimates for these emission factors. The procedure uses common information such as mean and standard deviation usually reported in IPCC (Intergovernmental Panel on Climate Change) database and other references in the literature that estimate emission factors. Essentially, it is a procedure in the class of meta-analysis, based on the computation of [Formula: see text], a new estimator for the variance of the emission factor. RESULTS: We discuss the quality of this estimator in terms of its probability distribution and show that it is unbiased. The resulting confidence interval for the mean emission factor is tighter than those that would have resulted from using other estimators such as pooled variance and thus, the new procedure improves the accuracy in estimating GHG emissions. The application of the procedure is illustrated in a case study involving the estimation of methane emissions from rice cultivation. CONCLUSIONS: The estimation of emission factors using [Formula: see text] was demonstrated to be more accurate because it is not biased and more precise than alternative methods.

13.
Sci Total Environ ; 914: 169844, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190915

RESUMEN

The synergistic strategy for fine particulate matter (PM2.5) and O3 pollution prevention and control has emerged as a pivotal approach in combating air pollution. Volatile organic compounds (VOCs) serve as crucial precursors to both O3 and secondary organic aerosols (SOAs), with motor vehicles representing one of their significant sources. In this study, a standard for establishing a database of VOC species emission factors for motor vehicles was developed, and a database containing 134 VOC species was constructed through field tests and literature surveys. The VOC emissions of light-duty gasoline passenger vehicles (LDGPVs) comprised primarily alkanes and aromatics. The VOC emissions of light-duty diesel trucks (LDDTs) comprised mostly alkanes. Regarding low-speed trucks, 3-wheel vehicles, medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs), their VOC emissions comprised mainly oxygenated volatile organic compounds (OVOCs). The update of emission standards resulted in a reduction in VOC species emission factors while altering the composition of VOCs. Attention should be directed toward isopentane, benzene and dichloromethane emitted by LDGPVs, dodecane, undecane, ethene and propene emitted by LDDTs, and acetaldehyde emitted by HDDTs. VOC species originating from LDGPVs were more dispersed than those originating from LDDTs and HDDTs. In addition, variations in VOC species were observed among motor vehicles with different fuel types. Toluene, ethene, benzene, m,p-xylene, isopentane, hexanal, ethyne and 1,2,4-trimethylbenzene were the predominant VOC species emitted by gasoline vehicles. Diesel vehicles emitted mainly dodecane, formaldehyde, propene, undecane, acetaldehyde, ethene, decane and benzene. The results could enhance our comprehension of the emission characteristics of VOC species originating from motor vehicles and provide data support and a scientific foundation for achieving synergistic PM2.5 and O3 pollution prevention and control.

14.
Sci Total Environ ; 914: 169987, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211861

RESUMEN

Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where stationary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO2) in Bengaluru, India. The study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment). After cleaning the data for known instrument artifacts and sensitivities, we generated 30 m high-resolution stable 'data only' spatial maps of BC, UFP, and CO2 for the study route. For the urban residential areas, the mean BC levels for residential roads, arterials, and highways were ~ 10, 22, and 56 µg m-3, respectively. A similar pattern (highways being characterized by highest pollution levels) was also observed for UFP and CO2. Using the data from repeat measurements, we carried out a Monte Carlo subsampling analysis to understand the minimum number of repeat measures to generate stable maps of pollution in the city. Leveraging the simultaneous nature of the measurements, we also mapped the quasi-emission factors (QEF) of the pollutants under investigation. The current study is the first multi-season mobile monitoring exercise conducted in a low or middle -income country (LMIC) urban setting that oversampled the study route and investigated the optimum number of repeat rides required to achieve representative pollution spatial patterns characterized with high precision and low bias. Finally, the results are discussed in the context of technical aspects of the campaign, limitations, and their policy relevance for our study location and for other locations. Given the day-to-day variability in the pollution levels, the presence of dynamic and unorganized sources, and active government pollution mitigation policies, multi-year mobile measurement campaigns would help test the long-term representativeness of the current results.

15.
Sci Total Environ ; 916: 170138, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237787

RESUMEN

The container manufacturing industry is the key contributor of industrial volatile organic compounds (VOCs). Emission factors (EFs) and source profiles of container manufacturing industry were comprehensively investigated basing on multiple VOCs discharge links. 17 samples were collected from a typical container manufacturing enterprise based on field measurements. The material balance method and weighted average method were applied to estimate EFs and establish VOCs source profiles. It is found that diluent use (DU) was the largest contributor (39.96 %), followed by intermediate painting spaying (IMPS), primer painting (PP), chassis painting (CP), exterior paint spaying (EPS), and interior paint spaying (IPS). EF of the container manufacturing industry (2.90 kg VOCs/ Twenty-foot Equivalent Units, TEU) was firstly estimated. EFs of six processes were further estimated. The EFs of DU, IMPS, PP, CP, EPS, and IPS were 1.22, 0.74, 0.42, 0.33, 0.20, and 0.00045 kg VOCs/TEU, respectively. EFs of six materials were further estimated. The EF of the diluent was largest (382.74 kg VOCs/t material), followed by water-based epoxy intermediate paint (132.09 kg VOCs/t material), organic-based epoxy zinc-rich priming paint (91.31 kg VOCs/t material). EFs of other paints ranged from 0.0047 to 43.01 kg VOCs/t material. These results suggest that the replacement of lower- VOCs- contained diluent and effective control from diluent consumption are dramatically conducive to VOCs reduction. Source profiles were established at the industry and individual process levels. Aromatics (77.05-98.38 %) were dominant components in all processes, followed by alkane and OVOCs. m/p-Xylene, o-xylene, and ethylbenzene were the key active species that should be prioritized for control. Overall, EFs and source profiles of the container manufacturing industry were firstly proposed, conducing to the systematic formulation of VOCs control strategies.

16.
J Hazard Mater ; 465: 133301, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141300

RESUMEN

This study aims to examine tire and road wear particle (TRWP) emissions under realistic conditions in order to provide some valuable insights into understanding their sources and fate in the environment. TRWP emissions were evaluated with a fully instrumented vehicle driving on five representative road types: urban, ring road, suburban, highway, and rural. Multiple vehicle dynamic variables were recorded to assess the factors influencing these emissions. For the first time, emitted particles were collected on filters and analyzed by means of pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, in specifically quantifying styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. The measurements obtained from the five road types revealed similar size distributions for SBR + BR emissions, with maxima found in the (ultra)fine fraction (< 0.39 µm). Upon applying an SBR + BR-to-TRWP conversion factor, (ultra)fine fraction TRWP emissions proved to be the highest for suburban (64 ± 5 µg/km), followed by highway, urban, ring road and rural routes. The output represents up to 480 tons of TRWP per year emitted in the EU27, thus suggesting a widely impregnated atmospheric compartment capable of threatening human health. Furthermore, an analysis of variables revealed that acceleration, tire constraints, and constant sustained driving factors had specific impacts on TRWP emissions.

17.
Environ Monit Assess ; 196(1): 3, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044411

RESUMEN

The current study aimed to measure real-world emissions of three-wheeled autorickshaws powered by CNG and parameters (such as speed, acceleration, air-fuel (A/F) ratio, and rpm) influencing 3-wheeler emission rates. Test vehicles manufactured under Bharat Standards BS-III and BS-IV were monitored for exhaust emissions in Delhi city using a portable exhaust emission measurement system (AVL Ditest Gas 1000). The average emission rates of CO, HC, and NO gases for on-road autorickshaws were found to be 0.015 ± 0.017, 0.003 ± 0.0017, and 0.007 ± 0.005 g/s, respectively. Further, the highest emission factor values of 3.98 g/km and 3.93 g/km were estimated for CO and HC+NO gases, respectively. These values were found to be 1.4-3.2 times higher than the respective BS emission norms (BS III-CO =1.25 g/km, HC+NO = 1.25 g/km; BS-IV-CO = 0.94 g/km and HC+NO = 0.94 g/km). In this study, it was observed that the driving pattern and emissions were affected by traffic characteristics, driver behavior (constant acceleration and deceleration), and vehicle characteristics. The air-fuel ratio (A/F) was found to correlate highly with emission rates, followed by acceleration/deceleration and speed. Further analysis found that more than 70% of the aggregated emissions were due to acceleration and deceleration, which contributed to nearly 70% of the travel time. This was followed by the breakdown of speed and emissions into different bins, which found that 20-30 kmph has a higher emission rate and 40-50 kmph bin has a lower emission rate.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , Ciudades , Gases , Vehículos a Motor , Gasolina
18.
Nutr Cycl Agroecosyst ; 127(3): 375-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025204

RESUMEN

Soil nitrous oxide (N2O) fluxes comprise a significant part of the greenhouse gas emissions of agricultural products but are spatially and temporally variable, due to complex interactions between climate, soil and management variables. This study aimed to identify the main factors that affect N2O emissions under sugarcane, using a multi-site database from field experiments. Greenhouse gas fluxes, soil, climate, and management data were obtained from 13 field trials spanning the 2011-2017 period. We conducted exploratory, descriptive and inferential data analyses in experiments with varying fertiliser and stillage (vinasse) type and rate, and crop residue rates. The most relevant period of high N2O fluxes was the first 46 days after fertiliser application. The results indicate a strong positive correlation of cumulative N2O with nitrogen (N) fertiliser rate, soil fungi community (18S rRNA gene), soil ammonium (NH4+) and nitrate (NO3-); and a moderate negative correlation with amoA genes of ammonia-oxidising archaea (AOA) and soil organic matter content. The regression analysis revealed that easily routinely measured climate and management-related variables explained over 50% of the variation in cumulative N2O emissions, and that additional soil chemical and physical parameters improved the regression fit with an R2 = 0.65. Cross-wavelet analysis indicated significant correlations of N2O fluxes with rainfall and air temperature up to 64 days, associated with temporal lags of 2 to 4 days in some experiments, and presenting a good environmental control over fluxes in general. The nitrogen fertiliser mean emission factors ranged from 0.03 to 1.17% of N applied, with urea and ammonium nitrate plus vinasse producing high emissions, while ammonium sulphate, ammonium nitrate without vinasse, calcium nitrate, and mitigation alternatives (nitrification inhibitors and timing of vinasse application) producing low N2O-EFs. Measurements from multiple sites spanning several cropping seasons were useful for exploring the influence of environmental and management-related variables on soil N2O emissions in sugarcane production, providing support for global warming mitigation strategies, nitrogen management policies, and increased agricultural input efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s10705-023-10321-w.

19.
Heliyon ; 9(9): e19531, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809458

RESUMEN

Cooking events can generate household air pollutants that deteriorate indoor air quality (IAQ), which poses a threat to human health and well-being. In this study, the emission characteristics and emission factors (EFs) of air pollutants of different meats (beef, lamb, chicken, pork, and fish) cooked by a novel oil-free process and common with-oil processes were investigated. Oil-free cooking tends to emit lower total volatile organic compound (TVOC) levels and fewer submicron smoke particles and can reduce the intake of fat and calories. However, TVOC emissions during oil-free cooking were significantly different, and the lamb EFs were nearly 8 times higher than those during with-oil cooking. The particle-bound polycyclic aromatic hydrocarbon (Æ©PPAH) and benzo(a)pyrene-equivalent (Æ©BaPeq) EFs during with-oil cooking ranged from 76.1 to 140.5 ng/g and 7.7-12.4 ng/g, respectively, while those during oil-free cooking ranged from 41.0 to 176.6 ng/g and 5.4-47.6 ng/g, respectively. The Æ©PPAH EFs of chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Furthermore, the Æ©BaPeq EFs of beef, chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Therefore, it is recommended to use the oil-free method to cook chicken, pork, and fish to reduce Æ©PPAH and Æ©BaPeq emissions, but not recommended to cook lamb due to the increase of Æ©BaPeq emissions. The with-oil uncovered cooking EFs of aldehydes ranged from 3.77 to 22.09 µg/g, and those of oil-free cooking ranged from 4.88 to 19.96 µg/g. The aldehyde EFs were lower during oil-free covered cooking than with-oil uncovered cooking for beef, chicken, and fish. This study provides a better realizing of new cooking approaches for the reduction of cooking-induced emission, but further research on the effects of food composition (moisture and fat) and characteristics is needed.

20.
Sci Total Environ ; 904: 166416, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659552

RESUMEN

China became the world leader in crude oil processing capacity in 2021. However, petroleum refining generates significant volatile organic compound (VOC) emissions, and the composite source profile, source-specific emission factors, and emission inventories of VOCs in the petroleum refining industry remain poorly understood. In this study, we focused on Guangdong, China's major province for crude oil processing, and systematically evaluated the historical emissions and reduction of VOCs in the petroleum refining industry from 2001 to 2020. We accomplished this by establishing local source-specific emission factors and composite source profiles. Finally, we quantitatively assessed the potential impact of these emissions on ozone and secondary organic aerosol formation. Our results revealed that VOC emissions from the petroleum refining industry in Guangdong followed an increasing-then-decreasing trend from 2001 to 2020, peaking at 37.3 Gg in 2016 and declining to 18.7 Gg in 2020. Storage tanks and wastewater collection and treatment remained the two largest sources, accounting for 41.9 %-53.4 % and 20.6 %-27.5 % of total emissions, respectively. Initially, Guangzhou and Maoming made the most significant contributions, with Huizhou becoming a notable contributor after 2008. Emission reduction efforts for VOCs in Guangdong's petroleum refining industry began showing results in 2017, with an average annual VOC emission reduction of 21.5 Gg from 2017 to 2020 compared to the unabated scenario. Storage tanks, wastewater collection and treatment, and loading operations were the primary sources of emission reduction, with significant contributions from Maoming, Huizhou, and Guangzhou. Alkanes made the largest contribution to VOC emissions, while alkenes/alkynes and aromatics comprised the most significant portions of ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP). We also estimated VOC emissions and reduction from petroleum refining for China from 2001 to 2020, and measures such as "one enterprise, one policy" and deep control strategies could reduce emissions by at least 103.9 Gg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA