Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.992
Filtrar
1.
Food Chem ; 460(Pt 2): 140536, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39089037

RESUMEN

This study explored the relationship between the interfacial behavior of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex (LF-EGCG) and the stability of high internal phase Pickering emulsions (HIPPEs). The formation of covalent bond between lactoferrin and polyphenol was verified by the increase in molecular weight. In LF-EGCG group, the surface hydrophobicity, interfacial pressure, and adsorption rate were decreased, while the molecular flexibility, interfacial film viscoelasticity, and interfacial protein content were increased. Meanwhile, LF-EGCG HIPPE possessed reduced droplet size, increased ζ-potential and stability. Rheology showed the viscoelasticity, structural recovery and gel strength of LF-EGCG HIPPE were improved, giving HIPPE inks better 3D printing integrity and clarity. Moreover, the free fatty acids (FFA) release of LF-EGCG HIPPE (62.6%) was higher than that of the oil group (50.1%). Therefore, covalent treatment effectively improved the interfacial properties of protein particles and the stability of HIPPEs. The macroscopic properties of HIPPEs were positively regulated by the interfacial properties of protein particles. The result suggested that the stability of emulsions can be improved by regulating the interfacial properties of particles.

2.
J Colloid Interface Sci ; 677(Pt A): 231-243, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39089129

RESUMEN

HYPOTHESIS: In order to understand the basic mechanisms affecting emulsion stability, the intrinsic dynamics of the drop population must be investigated. We hypothesize that transient ballistic motion can serve as a marker of interactions between drops. In 1G conditions, buoyancy-induced drop motion obscures these interactions. The microgravity condition onboard the International Space Station enable this investigation. EXPERIMENTS: We performed Diffusing Wave Spectroscopy (DWS) experiments in the ESA Soft Matter Dynamics (SMD) facility. We used Monte Carlo simulations of photon trajectory to support data analysis. The analysis framework was validated by ground-based characterizations of the initial drop size distribution (DSD) and the properties of the oil/water interface in the presence of surfactant. FINDINGS: We characterized the drop size distribution and found to be bi-disperse. Drop dynamics shows transient ballistic features at early times, reaching a stationary regime of primarily diffusion-dominated motion. This suggests different ageing mechanisms: immediately after emulsification, the main mechanism is coalescence or aggregation between small drops. However at later times, ageing proceeds via coalescence or aggregation of small with large drops in some emulsions. Our results elucidate new processes relevant to emulsion stability with potential impact on industrial processes on Earth, as well as enabling technologies for space exploration.

3.
Small ; : e2404121, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101620

RESUMEN

Developments in droplet microfluidics have facilitated an era of high-throughput, sensitive single-cell, or single-molecule measurements capable of tackling the heterogeneity present in biological systems. Relying on single emulsion (SE) compartments, droplet assays achieve absolute quantification of nucleic acids, massively parallel single-cell profiling, and more. Double emulsions (DEs) have seen recent interest for their potential to build upon SE techniques. DEs are compatible with flow cytometry enabling high-throughput multi-parameter drop screening and eliminate content mixing due to coalescence during lengthy workflows. Despite these strengths, DEs lack important technical functions that exist in SEs such as methods for adding reagents to droplets on demand. Consequently, DEs cannot be used for multistep workflows which has limited their adoption in assay development. Here, strategies to enable reagent addition and other active manipulations on DEs are reported by converting DE inputs to SEs on chip. After conversion, drops are manipulated using existing SE techniques, including reagent addition, before reforming a DE at the outlet. Device designs and operation conditions achieving drop-by-drop reagent addition to DEs are identified and used as part of a multi-step aptamer screening assay performed entirely in DE drops. This work enables the further development of multistep DE droplet assays.

4.
Food Chem ; 460(Pt 2): 140603, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39096802

RESUMEN

To improve the stability of pollock bone broth, compound emulsifiers were employed and evaluated in nano-emulsions from pollock bones (PBNs). The microstructure, creaming index, particle size, zeta potential, and viscosity of PBNs were characterized and the stability of PBNs was investigated. It revealed that the concentration of compound emulsifiers is one of the principal factors for particle size, zeta potential, and viscosity of PBNs, and 0.9% of sodium caseinate and sucrose fatty acid ester (CS-SE) can make the PBN display good stability. Its particle size changed from 81.17 ± 1.33 nm to 19.62 ± 0.21 nm when the temperature ranged from 40 °C to 80 °C, and its creaming index could reach a maximum (90.83%) among all PBNs in 4 months of freeze-thaw assays. PBN stability could be improved by the compound emulsifier (CS-SE), which offers a theoretical basis for the application of pollock bone broth.

5.
Int J Cosmet Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138627

RESUMEN

OBJECTIVE: Prosopis juliflora, commonly known as algaroba or mesquite, was introduced and has since proliferated throughout the semi-arid region of the Caatinga biome. Various studies have documented its properties, including antimicrobial, antioxidant, and antitumor activities, attributed to the presence of diverse secondary metabolites such as alkaloids, terpenoids, tannins, and flavonoids. The objective of this study was to evaluate the antioxidant and antityrosinase activities of P. juliflora fruit extract as a multifunctional active ingredient, and to develop cosmetic formulations containing this vegetal extract for potential applications in skincare products targeting pro-ageing and skin colour homogenization properties. METHODS: The extraction process followed established protocols. Chemical characterization of the extract involved quantification of total flavonoids and phenolic compounds, along with Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. In vitro antioxidant activity was assessed using different methods. Antityrosinase activity was determined by employing enzymatic assays. Cosmetic formulations containing Disodium EDTA, Phenoxyethanol (and) Ethylhexyl Glycerin, Distilled Water, Sodium Acrylates Copolymer Lecithin, Polyacrylamide (and) C13-14 Isoparaffin (and) Laureth-7, and 3.0% of the investigated plant extract were subjected to preliminary and accelerated stability tests. RESULTS: The extract demonstrated a concentration of total flavonoids (1.71 ± 0.26 µg EQ/mg) and exhibited concentrations of phenolic compounds at 0.21 ± 0.01 mg EAG/g. Metabolites such as flavonoids and saponins were annotated, as well as some of their respective glycosidic derivatives. The extract showed antioxidant potential and the ability to inhibit the oxidation cascade in both the initiation and propagation phases. Moreover, the extract exhibited noteworthy inhibition of antityrosinase activity, presenting 62.48 ± 2.09 at a concentration of 30.00 mg/mL. The formulations were stable in accelerated stability tests over a 60-day period. CONCLUSION: This research not only demonstrates scientifically by demonstrating the potential of a plant from the Caatinga biome with antioxidant and antityrosinase properties in the development of cosmetic products aimed at pro-ageing effects and skin colour harmonization, but also adds value to the P. juliflora production chain. This valorization encompasses various aspects which include environmental, social, and biodiversity responsibilities.


OBJECTIF: Prosopis juliflora, communément appelée algaroba ou mesquite, a été introduite et s'est depuis proliférée dans la région semi­aride du biome de la Caatinga. Diverses études ont documenté ses propriétés, y compris des activités antimicrobiennes, antioxydantes et antitumorales, attribuées à la présence de divers métabolites secondaires tels que les alcaloïdes, les terpénoïdes, les tanins et les flavonoïdes. L'objectif de cette étude était d'évaluer les activités antioxydantes et antityrosinases de l'extrait de fruit de P. juliflora en tant qu'ingrédient actif multifonctionnel, et de développer des formulations cosmétiques contenant cet extrait végétal pour des applications potentielles dans des produits de soins de la peau ciblant les propriétés anti­âge et d'homogénéisation de la couleur de la peau. MÉTHODES: Le processus d'extraction a suivi des protocoles établis. La caractérisation chimique de l'extrait a impliqué la quantification des flavonoïdes totaux et des composés phénoliques, ainsi qu'une analyse par chromatographie liquide­spectrométrie de masse. L'activité antioxydante in vitro a été évaluée en utilisant différentes méthodes. L'activité antityrosinase a été déterminée en utilisant des essais enzymatiques. Les formulations cosmétiques contenant du Disodium EDTA, du Phenoxyethanol (et) Ethylhexyl Glycerin, de l'Eau Distillée, du Copolymère de Sodium Acrylates Lecithin, du Polyacrylamide (et) C13­14 Isoparaffin (et) Laureth­7, et 3.0 % de l'extrait végétal investigué ont été soumises à des tests de stabilité préliminaires et accélérés. RÉSULTATS: L'extrait a montré une concentration totale de flavonoïdes (1.71 ± 0.26 µg EQ/mg) et des concentrations de composés phénoliques à 0.21 ± 0.01 mg EAG/g. Des métabolites tels que les flavonoïdes et les saponines ont été annotés, ainsi que certains de leurs dérivés glycosidiques respectifs. L'extrait a montré un potentiel antioxydant et la capacité d'inhiber la cascade d'oxydation tant dans les phases d'initiation que de propagation. De plus, l'extrait a présenté une inhibition notable de l'activité antityrosinase, avec un résultat de 62.48 ± 2.09 à une concentration de 30.00 mg/mL. Les formulations ont été stables lors des tests de stabilité accélérés sur une période de 60 jours. CONCLUSION: Cette recherche démontre scientifiquement le potentiel d'une plante du biome de la Caatinga avec des propriétés antioxydantes et antityrosinases dans le développement de produits cosmétiques visant les effets anti­âge et l'harmonisation de la couleur de la peau, tout en ajoutant de la valeur à la chaîne de production de P. juliflora. Cette valorisation englobe divers aspects incluant des responsabilités environnementales, sociales et liées à la biodiversité.

6.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39120393

RESUMEN

Currently, the biomimetic approach of drawing inspiration from nature has frequently been employed in designing drug nanocarriers (NCs) of actively target various diseases, ranging from cancer to neuronal and inflammation pathologies. The cell-membrane coating can confer upon the inner nanomaterials a biological identity and the functions exhibited by the cells from which the membrane is derived. Monocyte- and macrophage-membrane-coated nanomaterials have emerged as an ideal delivery system to target inflamed vasculature. Herein, we developed two biomimetic NCs using a human-derived leukaemia monocytic cell line (THP-1), either undifferentiated or differentiated by phorbol 12-myristate 13-acetate (PMA) into adherent macrophage-like cells as membrane sources for NC coating. We employed a secondary oil-in-water nano-emulsion (SNE) as the inner core, which served as an optimal NC for high payloads of lipophilic compounds. Two different biomimetic systems were produced, combining the biomimetic features of biological membranes with the physicochemical and nano-sized characteristics of SNEs. These systems were named Monocyte NEsoSome (M-NEsoSome) and Macrophage NEsoSome (M0-NEsoSome). Their uptake ability was investigated in tumour necrosis factor alfa (TNFα)-treated human umbilical vein endothelial cells (HUVECs), selected as a model of inflamed endothelial cells. The M0 membrane coating demonstrated accelerated internalisation compared with the monocyte coating and notably surpassed the uptake rate of bare NCs. In conclusion, M0-NEsoSome NCs could be a therapeutic system for targeting inflamed endothelial cells and potentially delivering anti-inflammatory drugs in vascular inflammation.

7.
Foods ; 13(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123580

RESUMEN

To enhance the functional properties of walnut protein isolate (WalPI), hydrophilic whey protein isolate (WPI) was selected to formulate WalPI-WPI nanoparticles (nano-WalPI-WPI) via a pH cycling technique. These nano-WalPI-WPI particles were subsequently employed to stabilize high internal phase Pickering emulsions (HIPEs). By adjusting the mass ratio of WalPI to WPI from 9:1 to 1:1, the resultant nano-WalPI-WPI exhibited sizes ranging from 70.98 to 124.57 nm, with a polydispersity index of less than 0.326. When the mass ratio of WalPI to WPI was 7:3, there were significant enhancements in various functional properties: the solubility, denaturation peak temperature, emulsifying activity index, and emulsifying stability index increased by 6.09 times, 0.54 °C, 318.94 m2/g, and 552.95 min, respectively, and the surface hydrophobicity decreased by 59.23%, compared with that of WalPI nanoparticles (nano-WalPI), with the best overall performance. The nano-WalPI-WPI were held together by hydrophobic interactions, hydrogen bonding, and electrostatic forces, which preserved the intact primary structure and improved resistance to structural changes during the neutralization process. The HIPEs stabilized by nano-WalPI-WPI exhibited an average droplet size of less than 30 µm, with droplets uniformly dispersed and maintaining an intact spherical structure, demonstrating superior storage stability. All HIPEs exhibited pseudoplastic behavior with good thixotropic properties. This study provides a theoretical foundation for enhancing the functional properties of hydrophobic proteins and introduces a novel approach for constructing emulsion systems stabilized by composite proteins as emulsifiers.

8.
Food Chem ; 460(Pt 3): 140761, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137575

RESUMEN

This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.

9.
Adv Sci (Weinh) ; : e2406223, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162178

RESUMEN

Nanoparticle-stabilized, bicontinuous interfacially jammed emulsion gels (bijels) find potential applications as battery, separation membrane, and chemical reactor materials. Decreasing the liquid domain sizes of bijels to sub-micrometer dimensions requires surfactants, complicating bijel synthesis and postprocessing into functional nanomaterials. This work introduces surfactant-free bijels with sub-micrometer domains, solely stabilized by nanoparticles. To this end, the covalent surface functionalization of silica nanoparticles is characterized by thermogravimetric analysis, mass spectrometry, Fourier-transform infrared spectroscopy, and contact angle measurements. Bijels are generated with the functionalized nanoparticles via solvent transfer induced phase separation (STrIPS), enabling the optimization of nanoparticle functionalization and surface ionization. Nanoparticles of intermediate functionalization and controlled negative surface charge stabilize bijels with sub-micrometer liquid domains. This remarkable control over bijel synthesis provides urgently needed progress to facilitate the widespread implementation of bijels as nanomaterials in research and applications.

10.
Food Chem ; 461: 140794, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39146680

RESUMEN

This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.

11.
J Colloid Interface Sci ; 677(Pt B): 250-258, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39146813

RESUMEN

Rapid and accurate detection and visualization of temperature variations near the human body hold significant importance. This study presents thermochromic colloids capable of adjusting the detectable temperature range and reflection wavelength over a wide spectrum. The systematic investigation focuses on understanding the influence of the molecular structure of nematic mesogens on the morphological dynamics of cholesteric liquid crystal droplets and their associated thermochromic behaviors. A tunable colorimetric temperature range (i.e., from 10 to 40 °C) and high sensitivity (i.e., Δλ ΔT-1 > 100nm °C-1) are realized through precise modulation of the alkyl chain lengths in cyanobiphenyls molecules, combined with a cholesteryl oleyl carbonate as a chiral dopant. We demonstrate the efficiency of a binary mixture of different mesogens, enabling customized structural colors with desired temperature responses. Finally, inspired by the ability of the octopus to camouflage through the elongation or contraction of its pigment cells, thermochromic droplets are embedded within a polymer matrix, resulting in a portable skin patch that offers quick, reversible, and direct temperature visualization of the human body.

12.
Food Res Int ; 192: 114779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147467

RESUMEN

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Asunto(s)
Emulsiones , Oryza , Oxidación-Reducción , Tamaño de la Partícula , beta Caroteno , beta Caroteno/química , Oryza/química , Disponibilidad Biológica , Proteínas de Plantas/química , Viscosidad , Malondialdehído
13.
J Control Release ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153722

RESUMEN

Controlled-release systems enhance anti-tumor effects by leveraging local antigen persistence for antigen-presenting cells (APCs) recruitment and T cell engagement. However, constant antigen presentation alone tends to induce dysfunction in tumor-specific CD8+ T cells, neglecting the synergistic effects of co-stimulatory signal. To address this, we developed a soft particle-stabilized emulsion (SPE) to deliver lipopeptides with controlled release profiles by adjusting their hydrophobic chain lengths: C6-SPE (fast release), C10-SPE (medium release), and C16-SPE (slow release). Following administration, C6-SPE release antigen rapidly, inducing early antigen presentation, whereas C16-SPE's slow-release delays antigen presentation. Both scenarios missed the critical window for coordinating with the expression of CD86, leading to either T cell apoptosis or suboptimal activation. In contrast, C10-SPE achieved a spatiotemporally synergetic effect of the MHC-I-peptide complex and co-stimulatory signal (CD86), leading to effective dendritic cell (DC) activation, enhanced T cell activation, and tumor regression in EG7-OVA bearing mice. Additionally, co-delivery of cytosine-phosphate-guanine (CpG) with SPE provided a sustained expression of the CD86 window for DC activation, improving the immune response and producing robust anti-tumor effects with C6-SPE comparable to C10-SPE. These findings highlight that synchronizing the spatiotemporal dynamics of antigen presentation and APC activation may confer an optimal strategy for enhanced vaccinations.

14.
Food Chem ; 460(Pt 2): 140586, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39079359

RESUMEN

This research explored the effect of media milling on complexation of corn starch (CS) and quercetin (QC), interaction mechanism and Pickering emulsifying ability of corn-quercetin (CS-QC) complex. CS-QC with QC/CS ratio of 1:24 had the highest encapsulation efficiency of 76.00 ± 1.30 %. Average volume-mean diameter, average whole molecular size (Rh) and debranchedamylopectinchain length of CS-QC were significantly decreased after milling. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) spectra confirmed the complexation between CS and QC. Emulsifying capacity and emulsion stability of Pickering emulsion stabilized by 5 % CS-QC complex particles after 120 min milling reached 100.00 % and 100.00. Pickering emulsions stabilized by these complex particles demonstrated superior oxidative stability. These results demonstrated that media milling could be an efficient physical approach to obtain starch-polyphenol complex by enhancing non-covalent interactions, which could not only be used as food-grade Pickering emulsifiers, but also retard lipid oxidation.

15.
J Sci Food Agric ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011982

RESUMEN

BACKGROUND: Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS: The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION: This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.

16.
JID Innov ; 4(4): 100273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045393

RESUMEN

Psoriasis is an inflammatory skin disease characterized by epidermal and immune dysfunctions. Although efficient, current topical treatments display adverse effects, including skin atrophy and burning sensation, leading to poor patient adherence. To overcome these downsides, pickering emulsions were formulated in which the calcitriol-containing dispersed phase was stabilized with either cyclosporin A- or tacrolimus-loaded poly(lactic-co-glycolic) acid nanoparticles. This study aimed to investigate their biological effects on lymphocytes and epidermal cells and their effectiveness in an imiquimod-induced psoriasis-like mouse model. Results showed that both emulsions significantly inhibited nuclear factor of activated T cell translocation in T lymphocytes as well as their IL-2 production, cell activation, and proliferation. In keratinocytes, inhibition of nuclear factor of activated T cell translocation decreased the production of IL-8 and TNF-α. Topical application of emulsions over skin biopsies ex vivo showed accumulation of rhodamin B-coupled poly(lactic-co-glycolic) acid nanoparticles throughout the epidermis by immunofluorescence and significantly decreased the antigen-presenting capacity of Langerhans cells in relation to a reduced expression of activation markers CD40, CD86, and HLA-DR. Using an imiquimod-induced psoriasis model in vivo, pickering emulsions significantly alleviated psoriasiform lesions potentially attributed to the decreased cutaneous expression of T-cell markers, proinflammatory cytokines, chemokines, and specific epidermal cell genes. Altogether, pickering emulsion might be a very efficient formulation for treating inflammatory dermatoses.

17.
Int J Cosmet Sci ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049783

RESUMEN

Emulsions in the form of creams, lotions, gels or foams are the most widely used personal care formulations to improve the condition and feel of the skin. Achieving an optimal balance between their performance, effectiveness and sensory profile is essential, with the sensory profile being a key factor in consumer satisfaction and the success of these products in the market. Well-established methods using highly trained and semi-trained panels (e.g. Spectrum descriptive analysis, Flash Profile method, Quantitative Descriptive Analysis method and 'Check-all-that-apply') are available and commonly used for the sensory assessment of personal care products. Nevertheless, a common drawback among all these methods is their inherent cost, both in terms of financial resources and time requirements. In recent years, research studies have emerged to address this limitation by investigating potential correlations between tactile sensory attributes and instrumental data associated with the physical characteristics of topical formulations. In other words, significant efforts have been invested in the development of robust instrumental methods specifically designed to accurately predict the sensory description that a panel of assessors could establish. These methods are not only faster, cheaper and more objective compared to traditional sensory testing, but they can also be applied to formulations that have not undergone extensive safety and toxicological testing. This review summarizes the most relevant findings, trends and current challenges in predicting tactile sensory attributes of personal care emulsions based on instrumental parameters.


Les émulsions sous forme de crèmes, lotions, gels ou mousses sont les formulations de soins personnels les plus largement utilisées pour améliorer l'état et la sensation de la peau. Il est essentiel de parvenir à un équilibre parfait entre leur performance, leur efficacité et leur profil sensoriel, ce dernier étant un facteur clé de la satisfaction des consommateurs et du succès de ces produits sur le marché. Des méthodes bien établies utilisant des panels hautement qualifiés et semi­qualifiés sont disponibles et couramment utilisées pour l'évaluation sensorielle des produits de soins personnels. Néanmoins, un inconvénient commun à toutes ces méthodes est leur coût inhérent, tant en termes de ressources financières que de temps. Ces dernières années, nous avons assisté à l'émergence d'études de recherche tentant de remédier à ces limites en étudiant les corrélations potentielles entre les descripteurs sensoriels tactiles et les données instrumentales associées aux caractéristiques physiques des formulations topiques. En d'autres termes, des efforts importants ont été déployés dans le développement de méthodes instrumentales robustes spécifiquement conçues pour prédire avec précision la description sensorielle qu'un panel d'évaluateurs pourrait établir. Ces méthodes sont non seulement plus rapides, moins coûteuses et plus objectives par rapport aux tests sensoriels traditionnels, mais elles peuvent également être appliquées à des formulations qui n'ont pas été entièrement testées en termes de sécurité et de profils toxicologiques. La présente revue résume les résultats, tendances et défis actuels les plus pertinents dans la prédiction des attributs sensoriels tactiles des émulsions de soins personnels à partir de paramètres instrumentaux.

18.
Food Chem ; 460(Pt 1): 140402, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39059330

RESUMEN

Pea protein isolate (PPI)-hyaluronic acid (HA)-tannic acid (TA) ternary complexes were assembled using non-covalent interactions, their potential application in 3D printing and delivery of curcumin were investigated. As the HA-to-TA ratio in the complexes changed from 1:0 to 0:1, the oil-water interfacial tension first decreased and then increased, and the secondary structure of the proteins changed. The composition of the complexes (HA-to-TA ratio) was optimized to produce high internal phase emulsions (HIPEs) containing small uniform oil droplets with good storage and thermal stability. When the HA to TA ratio is 7:1 (P-H7-T1), HIPEs exhibited better viscosity, viscoelasticity, and thixotropy, which contributed to its preferable 3D printing. Moreover, curcumin-loaded HIPEs stabilized by P-H7-T1 showed a high lipid digestibility (≈101%) and curcumin bioaccessibility (≈79%). In summary, the PPI-HA-TA-stabilized HIPEs have good potential to be 3D-printable materials that could be loaded with bioactive components.

19.
J Agric Food Chem ; 72(30): 16988-16997, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024566

RESUMEN

Reducing salt intake without affecting the saltiness perception remains a great challenge for the food industry. Herein, the demulsification of water droplets and air bubbles was controlled to modulate the release of sodium from oleogel-stabilized water-in-oil emulsions (OGEs) stabilized by monoglyceride crystals. The effect of monoglycerides with carbon chain length (glycerol monolaurate-GML, glyceryl monostearate-GMS, and glycerol monopalmitate-GMP) and homogenization methods (hand-shaking or high-speed blender) on sodium release and saltiness was investigated by in vitro and in vivo oral processing tests. Milky-white stable emulsions were formed with both water droplets and air bubbles dispersing in the oil phase, regardless of the selected homogenization methods. Air bubbles were more unstable than water droplets during oral digestion. GML OGEs with more and larger air bubbles and the lowest hardness exhibited the highest sodium release rate and the strongest saltiness, independent of homogenization methods. The balance between air bubbles and water droplets in the GMS and GMP OGEs caused slower sodium release and lower saltiness. Overall, the presence of air bubbles in NaCl-loaded W/O oleogel-based emulsions was shown to have important implications for tailoring their sodium release and saltiness.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Agua , Emulsiones/química , Compuestos Orgánicos/química , Agua/química , Humanos , Cloruro de Sodio/química , Monoglicéridos/química , Gusto , Aceites/química , Aire , Masculino
20.
Foods ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39063247

RESUMEN

In this study, for enhancing the resistance of probiotics to environmental factors, we designed a microgel beads delivery system loaded with synbiotics. Multiple droplets of W1/O/W2 emulsions stabilized with zein-apple pectin hybrid nanoparticles (ZAHPs) acted as the inner "egg," whereas a three-dimensional network of poly-L-lysine (PLL)-alginate-CaCl2 (Ca) crosslinked gel layers served as the outermost "box." ZAHPs with a mass ratio of 2:1 zein-to-apple pectin showed excellent wettability (three-phase contact angle = 89.88°). The results of the ζ-potentials and Fourier transform infrared spectroscopy demonstrate that electrostatic interaction forces and hydrogen bonding were the main forces involved in the formation of ZAHPs. On this basis, we prepared W1/O/W2 emulsions with other preparation parameters and observed their microstructures by optical microscopy and confocal laser scanning microscope. The multi-chambered structures of W1/O/W2 emulsions were successfully visualized. Finally, the W1/O/W2 emulsions were coated with PLL-alginate-Ca using the solution extrusion method. The results of the in vitro colonic digestion stage reveal that the survival rate of probiotics in the microgel beads was about 75.11%, which was significantly higher than that of the free. Moreover, probiotics encapsulated in microgel beads also showed positive storage stability. Apple pectin would serve as both an emulsifier and a prebiotic. Thus, the results indicate that the "egg-box" shaped microgel beads, designed on the basis of pH-sensitive and enzyme-triggered mechanisms, can enhance the efficiency of probiotics translocation in the digestive tract and mediate spatiotemporal controlled release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA