Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.869
Filtrar
1.
Sci Rep ; 14(1): 10577, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719920

RESUMEN

Cold hypersensitivity in the hands and feet (CHHF) is a protective or predisposing factor for many diseases; however, the relationship between CHHF and erectile dysfunction (ED) remains unclear. We aimed to investigate associations between CHHF and ED among young men of Southeast Asian origin. In this cross-sectional study, sexually active Taiwanese men aged 20-40 years were enrolled via an online questionnaire comprising general demographic information, comorbidities, subjective thermal sensations of their hands and feet in the past 6 months, and their erectile function using the International Index of Erectile Function-5 (IIEF-5). Participants who reported cold sensation of hands and feet were classified to have CHHF; those with IIEF-5 score ≤ 21 were considered to have ED. Total 54.2% and 27.9% of participants had ED and CHHF, respectively. Men with CHHF were significantly younger, had lower body mass index and IIEF-5 scores (p < 0.001), and a lower prevalence of diabetes mellitus (p = 0.033) along with higher prevalence of ED, psychiatric disorders, and insomnia (p < 0.001). After adjusting for predisposing factors of ED, CHHF (odds ratio 1.410, 95% confidence interval 1.159-1.714; p = 0.001) remained an independent predictor of ED. Thus, CHHF is independently associated with ED, affecting more than a quarter of young Taiwanese men. Autonomic dysregulation and subclinical endothelial dysfunction may be common pathophysiologies of CHHF and ED.


Asunto(s)
Disfunción Eréctil , Pie , Mano , Humanos , Masculino , Disfunción Eréctil/epidemiología , Disfunción Eréctil/etiología , Taiwán/epidemiología , Adulto , Estudios Transversales , Adulto Joven , Mano/fisiopatología , Pie/fisiopatología , Síndromes Periódicos Asociados a Criopirina/epidemiología , Síndromes Periódicos Asociados a Criopirina/complicaciones , Encuestas y Cuestionarios , Prevalencia , Frío/efectos adversos , Factores de Riesgo
2.
Microvasc Res ; 154: 104692, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705254

RESUMEN

OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.

3.
Diagnostics (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732364

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has higher rates among the general population, so early identification and prevention is the goal. The mechanisms of COPD development have not been completely established, although it has been demonstrated that endothelial dysfunction plays an important role. However, to date, the measurement of endothelial dysfunction is still invasive or not fully established. Nailfold video capillaroscopy (NVC) is a safe, non-invasive diagnostic tool that can be used to easily evaluate the microcirculation and can show any possible endothelial dysfunctions early on. The aim of this review is to evaluate if nailfold microcirculation abnormalities can reflect altered pulmonary vasculature and can predict the risk of cardiovascular comorbidities in COPD patients. METHODS: A systematic literature search concerning COPD was performed in electronic databases (PUBMED, UpToDate, Google Scholar, ResearchGate), supplemented with manual research. We searched in these databases for articles published until March 2024. The following search words were searched in the databases in all possible combinations: chronic obstructive pulmonary disease (COPD), endothelial damage, vascular impairment, functional evaluation, capillaroscopy, video capillaroscopy, nailfold video capillaroscopy. Only manuscripts written in English were considered for this review. Papers were included only if they were able to define a relationship between COPD and endothelium dysfunction. RESULTS: The search selected 10 articles, and among these, only three previous reviews were available. Retinal vessel imaging, flow-mediated dilation (FMD), and skin autofluorescence (AF) are reported as the most valuable methods for assessing endothelial dysfunction in COPD patients. CONCLUSIONS: It has been assumed that decreased nitric oxide (NO) levels leads to microvascular damage in COPD patients. This finding allows us to assume NVC's potential effectiveness in COPD patients. However, this potential link is based on assumption; further investigations are needed to confirm this hypothesis.

4.
Cardiovasc Res ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742661

RESUMEN

AIMS: Atrial fibrillation (AF), the most common cardiac arrhythmia favoring ischemic stroke and heart failure involves left atrial remodeling, fibrosis and a complex interplay between cardiovascular risk factors. This study examined whether activated factor X (FXa) induces pro-remodeling and pro-fibrotic responses in atrial endothelial cells (AECs) and human atrial tissues and determined the underlying mechanisms. METHODS AND RESULTS: AECs were from porcine hearts and human right atrial appendages (RAA) from patients undergoing heart surgery. Protein expression levels were assessed by Western blot and immunofluorescence staining, mRNA levels by RT-qPCR, formation of reactive oxygen species (ROS) and NO using fluorescent probes, thrombin and angiotensin II generation by specific assays, fibrosis by Sirius red staining and senescence by senescence-associated beta-galactosidase (SA-ß-gal) activity.In AECs, FXa increased ROS formation, senescence (SA-ß-gal activity, p53, p21), angiotensin II generation and the expression of pro-inflammatory (VCAM-1, MCP-1), pro-thrombotic (tissue factor), pro-fibrotic (TGF-ß and collagen-1/3a) and pro-remodeling (MMP-2/9) markers whereas eNOS levels and NO formation were reduced. These effects were prevented by inhibitors of FXa but not thrombin, protease-activated receptors antagonists (PAR-1/2) and inhibitors of NADPH oxidases, ACE, AT1R, SGLT1/SGLT2. FXa also increased expression levels of ACE1, AT1R, SGLT1/2 proteins which was prevented by SGLT1/2 inhibitors. Human RAA showed tissue factor mRNA levels that correlated with markers of endothelial activation, pro-remodeling and pro-fibrotic responses and SGLT1/2 mRNA levels. They also showed protein expression levels of ACE1, AT1R, p22phox, SGLT1/2, and immunofluorescence signals of nitrotyrosine and SGLT1/2 colocalized with those of CD31. FXa increased oxidative stress levels which were prevented by inhibitors of the AT1R/NADPH oxidases/SGLT1/2 pathway. CONCLUSIONS: FXa promotes oxidative stress triggering premature endothelial senescence and dysfunction associated with pro-thrombotic, pro-remodeling and pro-fibrotic responses in AECs and in human RAA involving the AT1R/NADPH oxidases/SGLT1/2 pro-oxidant pathway. Targeting this pathway may be of interest to prevent atrial remodeling and the progression of atrial fibrillation substrate.

5.
Nutr Rev ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728008

RESUMEN

Cardiovascular-related complications (CVCs) are the primary cause of death in patients undergoing hemodialysis (HD), accounting for greater than half of all deaths. Beyond traditional risk factors, chronic inflammation, extreme oxidative stress (OS), and endothelial dysfunction emerge as major contributors to accelerated CVCs in HD patients. Ample evidence shows that HD patients are constantly exposed to excessive OS, due to uremic toxins and pro-oxidant molecules that overwhelm the defense antioxidant mechanisms. The present study highlights the efficiency of natural antioxidant supplementation in managing HD-induced inflammation, OS, and consequently CVCs. Moreover, it discusses the underlying molecular mechanisms by which these antioxidants can decrease mitochondrial and endothelial dysfunction and ameliorate CVCs in HD patients. Given the complex nature of OS and its molecular pathways, the utilization of specific antioxidants as a polypharmacotherapy may be necessary for targeting each dysregulated signaling pathway and reducing the burden of CVCs.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708505

RESUMEN

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Asunto(s)
Movimiento Celular , Proliferación Celular , Dexametasona , Necrosis de la Cabeza Femoral , Glucocorticoides , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos BALB C , Animales , Ratones , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Glucocorticoides/efectos adversos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dexametasona/efectos adversos , Dexametasona/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Supervivencia Celular/efectos de los fármacos , Cabeza Femoral/patología , Cabeza Femoral/irrigación sanguínea , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Angiogénesis
7.
J Reprod Immunol ; 163: 104248, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703439

RESUMEN

Preeclampsia (PE) is the major cause of maternal-fetal mortality and morbidity. Its pathophysiology is not elucidated, but there is evidence for the role of visfatin/nicotinamide phosphoribosyl transferase (NAMPT), mainly due to its relation to endothelial dysfunction, a hallmark of PE. However, there is heterogeneous data regarding visfatin/NAMPT in healthy pregnancy (HP) and PE. Therefore, we performed a search on MEDLINE/PubMed using the terms "visfatin and preeclampsia" and "NAMPT and preeclampsia, and we selected 23 original articles: 12 articles reported increased levels in PE compared to HP, only four articles showed lower levels and eight articles did not find differences regarding visfatin/NAMPT in the groups studied. It is widely acknowledged that levels detected in plasma, serum, or placenta can be influenced by the size of the population and sample analyzed, as well as genetic factors. We further discussed the correlations of visfatin/NAMPT with clinical biomarkers in PE and inflammatory pathways. Considering the common inflammatory mechanisms between PE and visfatin/NAMPT, few studies have recently performed serum or plasma dosages. In conclusion, further studies are needed to highlight the potential role of visfatin/NAMPT in the pathophysiology of PE. This will provide comparative evidence to establish it as a biomarker for disease outcomes and treatment.

8.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702777

RESUMEN

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Células Endoteliales de la Vena Umbilical Humana , Canales Iónicos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Diabetes Mellitus Experimental/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Glucemia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Mecanotransducción Celular , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/deficiencia , Células Cultivadas , Proliferación Celular , Apoptosis , Masculino , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Movimiento Celular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Ratones , Estreptozocina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
9.
Front Nutr ; 11: 1350378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706564

RESUMEN

Introduction: The maintenance of endothelial barrier function is essential for vasal homeostasis and prevention of cardiovascular diseases. Among the toxic stimuli involved in the initiation of atherosclerotic lesions, Gram negative lipopolysaccharide (LPS) has been reported to be able to trigger endothelial dysfunction, through the alteration of barrier permeability and inflammatory response. Hydroxytyrosol (HT) and tyrosol (Tyr), the major phenolic compounds of extra virgin olive oil (EVOO), as wells as their circulating sulphated and glucuronidated metabolites have been shown to exert anti-inflammatory effects at endothelial level. Methods: In this study we investigated the protective effects of HT and Tyr metabolites on LPS-induced alteration of permeability in Human Umbilical Vein Endothelial Cells (HUVEC) monolayers and examined underlying signaling pathways, focusing on tight junction (TJ) proteins, mitogen-activated protein kinase (MAPK) and NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Results: It was shown that LPS-increased permeability in HUVEC cells was due to the alteration of TJ protein level, following the activation of MAPK and NLRP3. HT and Tyr sulphated and glucuronidated metabolites were able to limit the effects exerted by LPS, acting as signaling molecules with an efficacy comparable to that of their precursors HT and Tyr. Discussion: The obtained results add a further piece to the understanding of HT and Tyr metabolites mechanisms of action in vascular protection.

10.
Heliyon ; 10(9): e29623, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694062

RESUMEN

Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the chronic inflammation and cause of endothelial dysfunction (ED). Heart rate variability (HRV) is a marker of sympathetic and parasympathetic autonomic nervous system dysfunction. We investigated the association of lipid profile, inflammatory biomarkers, endothelial dysfunction, and heart rate variability in adolescents with T1DM among UAE population. Method: In this case-control study we recruited 126 adolescents (13-22 years) from Abu Dhabi, UAE (United Arab Emirates). Demographic, anthropometric, blood and urine samples were collected after an overnight fasting. HRV measurements were determined per Task Force recommendations. Independent t-test or Mann-Whitney U test and Pearson's Chi-squared test were used to compare groups. Adjusted conditional logistic regression model was used to identify the determinants independently associated with T1DM. Results: The mean ages in control (n = 47) and patient (n = 79) groups were 17.5 ± 4.6 and 18.6 ± 4.8 years, respectively. A family history of diabetes and waist and hip circumferences significantly differed between the groups (p = 0.030 and 0.010). The patients with T1DM exhibited significantly higher levels of atherogenic markers than control. Endothelial dysfunction biomarkers such as levels of sICAM-1 (p < 0.001), adiponectin (p < 0.001) and 25-hydroxyvitamin D (p < 0.001) were significantly different in the control group compared with those in the T1DM group. There was a significant difference in SDNN intervals, NN50, pNN50, and SD1/SD2 among the two groups. In adjusted analysis, total cholesterol (adjusted Odds Ratio (aOR): 2.78, 95 % CI:1.37-5.64; p = 0.005), LDL (2.66, 95%CI:1.19-5.92; p = 0.017), and triglycerides (5.51, 95%CI:1.57-19.41; p = 0.008) were significantly associated with developing T1DM. The HRV indicators were significantly associated with decrease odds of T1DM after controlling for SBP, BMI, and family history of DM. Conclusion: In this study, adolescents with T1DM showed a significant association with lipid profile, ED, and HRV compared with controls. Thus, an early attention to diabetes control is required to reduce the risk of cardiac autonomic neuropathy leading to various cardiovascular diseases.

11.
Oral Dis ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696515

RESUMEN

OBJECTIVE: This study aimed to assess the effects of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) in chronic periodontitis and explore the underlying mechanism involved. METHODS: In vitro, Pg-OMVs were incubated with Ea.hy926 (vessel endothelial cells, ECs) to evaluate their effects on endothelial functions and to investigate the underlying mechanism. The effects of endothelial dysfunction on MG63 osteoblast-like cells were verified using an indirect co-culture method. For in vivo studies, micro-CT was conducted to identify alveolar bone mass. Immunofluorescence staining was conducted to confirm the levels of stimulator of interferon genes (STING) in the blood vessel and the number of Runx2+ cells around the alveolar bone. RESULTS: Pg-OMVs were endocytosed by ECs, leading to endothelial dysfunction. The cGAS-STING-TBK1 pathway was activated in ECs, which subsequently inhibited MG63 migration and early osteogenesis differentiation. In vivo, Pg-OMVs promoted alveolar bone resorption, increased STING levels in the blood vessel, and decreased Runx2+ cells around the alveolar bone. CONCLUSIONS: Pg-OMVs caused endothelial dysfunction and activated the cGAS-STING-TBK1 signal cascade in ECs, thereby impairing ECs-mediated osteogenesis. Furthermore, Pg-OMVs aggregated alveolar bone loss and altered the blood vessel-mediated osteogenesis with elevated STING.

12.
J Clin Med ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731063

RESUMEN

The endothelium is a continuous layer of cells that coats the interior walls of arteries, capillaries, and veins. It has an essential regulatory role in hemostatic function, vascular tone, inflammation, and platelet activity. Endothelial dysfunction is characterized by a shift to a proinflammatory and prothrombic state, and it could have a bidirectional relationship with heart failure (HF). Due to neurohormonal activation and shear stress, HFrEF may promote endothelial dysfunction, increase ROS synthesis, and reduce nitric oxide production. Different studies have also shown that endothelium function is damaged in HFpEF because of a systemic inflammatory state. Some clinical trials suggest that drugs that have an effect on endothelial dysfunction in patients with HF or cardiovascular disease may be a therapeutic option. The aim of this review is to highlight the pathogenetic correlation between endothelial dysfunction and heart failure and the related potential therapeutic options.

13.
J Clin Med ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731215

RESUMEN

Background: Frailty is increasingly recognized as a significant health concern, particularly due to its association with cardiovascular pathologies. This study aims to examine how vascular endothelial dysfunction, a known premorbid stage in the pathophysiology of cardiovascular diseases, contributes to the link between cardiovascular illness and frailty. Methods: The inclusion criteria allowed us to focus on original clinical research articles published in English between January 2014 and January 2024, which reported quantitative assessments of the relationship between frailty and vascular endothelial dysfunction. Excluded from the study were systematic literature reviews, meta-analyses, editorials, conference articles, theses, methodological articles, and studies using animal or cell culture models. Searches were conducted of electronic databases, including Scopus, ScienceDirect, and Medline, up to 22 January 2024. The risk of bias was assessed using the Joanna Briggs Institute's critical appraisal tools. The methods used to present and synthesize the results involved data extraction and categorization based on biomolecular and clinical findings of endothelial dysfunction. Results: Following the application of the inclusion and exclusion criteria, a total of 29 studies were identified. Vascular endothelial dysfunction was associated with increased frailty phenotypes, and we also identified SGLT-2 inhibitors' potential role as an anti-fragility treatment that affects endothelial dysfunction. This study found that the physical and biomolecular markers of endothelial dysfunction are associated with frailty measures and have predictive value for incident frailty. Furthermore, some studies have shown inflammation to have an impact on endothelial dysfunction and frailty, and an innovative age-related chronic inflammation measure has been proven to predict frailty scores. Conclusions: The current evidence suggests an association between endothelial dysfunction and frailty, highlighting the need for further research to elucidate the underlying mechanisms.

14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732160

RESUMEN

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/virología , COVID-19/patología , SARS-CoV-2/patogenicidad , Pulmón/irrigación sanguínea , Pulmón/patología , Pulmón/virología , Embolia Pulmonar/virología , Embolia Pulmonar/etiología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/virología , Hipertensión Pulmonar/patología , Síndrome Post Agudo de COVID-19 , Trombosis/virología , Trombosis/etiología , Trombosis/patología
15.
Front Endocrinol (Lausanne) ; 15: 1359255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645427

RESUMEN

Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.


Asunto(s)
Angiopatías Diabéticas , Endotelio Vascular , Humanos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Animales , Estrés Oxidativo/fisiología
16.
Arch Toxicol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635053

RESUMEN

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.

17.
J Med Ultrasound ; 32(1): 48-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665342

RESUMEN

Background: Hypertensive disorder of pregnancy (HDP) comprise chronic hypertension, gestational hypertension, preeclampsia/eclampsia, and preeclampsia superimposed on chronic hypertension. HDP complicate up to 10% of pregnancies worldwide and carry significant risks of maternal and perinatal morbidity and mortality. The aim of this study was to evaluate the derangement and characteristics of brachial artery flow-mediated dilation (BAFMD) in women with HDP. Methods: The BAFMD of the right brachial artery of 80 women with HDP (pregnant HDP), 80 normotensive pregnant women (pregnant non-HDP), and 80 healthy nonpregnant women (nonpregnant controls) was evaluated with B-mode ultrasound. The age, blood pressure, body mass index (BMI), brachial artery diameter, and BAFMD of the participants were compared. P ≤ 0.05 was statistically significant. Results: The pregnant HDP group had significantly lower mean BAFMD compared to pregnant non-HDP and nonpregnant controls (6.9% ± 2.53% vs. 8.32% ± 3.4% vs. 9.4% ± 2.68%; P < 0.001). There was no significant difference between the mean BAFMD of the pregnant HDP subgroups: preeclampsia (5.81% ± 1.7%) versus gestational hypertension (6.43% ± 3.02%); P = 0.57. BAFMD diminished with advancing gestational age in both the pregnant HDP and pregnant non-HDP groups. On regression analysis, BAFMD was a poor marker for HDP, while BMI was an independent predictor for HDP. Conclusion: Even though HDP were associated with significantly diminished BAFMD, it was not a good marker for HDP.

18.
Am Heart J Plus ; 42: 100392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38680649

RESUMEN

Coronary microvascular dysfunction (CMD) encompasses a spectrum of structural and functional alterations in coronary microvasculature resulting in impaired coronary blood flow and consequent myocardial ischemia without obstruction in epicardial coronary artery. The pathogenesis of CMD is complex involving both functional and structural alteration in the coronary microcirculation. In adults, CMD is predominantly discussed in context with anginal chest pain or existing ischemic heart disease and its risk factors. The presence of CMD suggests increased risk of adverse cardiovascular events independent of coronary atherosclerosis. Coronary microvascular dysfunction is also known in children but is rarely recognized due to paucity of concommitent coronary artery disease. Thus, its clinical presentation, underlying mechanism of impaired microcirculation, and prognostic significance are poorly understood. In this review article, we will overview variable CMD reported in children and delineate its emerging clinical significance.

19.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608525

RESUMEN

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Asunto(s)
Ácidos Docosahexaenoicos , Hipertensión , Ratones Endogámicos C57BL , Obesidad , Remodelación Vascular , Animales , Masculino , Humanos , Ácidos Docosahexaenoicos/farmacología , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/metabolismo , Remodelación Vascular/efectos de los fármacos , Ratones , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Dieta Alta en Grasa/efectos adversos , Angiotensina II , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Ratones Obesos , Vasoconstricción/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Animales de Enfermedad
20.
Am Heart J Plus ; 41: 100393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38655035

RESUMEN

Study objectives: Patients with carpal tunnel syndrome (CTS) show manifestations of arterial abnormalities, including carotid intimal thickening and increased vascular stiffness. As carpal tunnel syndrome is associated with amyloidosis, we hypothesized that previously observed abnormalities can largely be related with concomitant amyloidosis rather than CTS itself. Design: Prospective observational study. Setting: Medeniyet University Goztepe Hospital. Participants: 61 patients with CTS (of whom 32 had biopsy-proven amyloidosis) and 36 healthy controls. Interventions: Subjects underwent ultrasound examinations for the measurement of coronary flow velocity reserve (CFVR), flow-mediated vasodilatation (FMD) and carotid intimal-media thickness (CIMT). Main outcome measures: Comparison of CFVR, FMD and CIMT in CTS patients with or without amyloidosis. Results: Patients with either CTS or CTS with concomitant amyloidosis (CTS-A) had significantly lower FMD (9.7 % ± 4.0 % in CTS and 10.3 % ± 4.6 % in CTS-A groups, p < 0.05 for both) and CFVR (2.4 (2.1-2.8) in CTS and 1.8 (1.6-2.1) in CTS-A groups, p < 0.001 for both) as compared to controls, while CIMT was only increased in CTS-A group (0.70 (0.60-0.80), p < 0.001). The reduction in CFVR was solely related to an increased basal flow velocity in CTS patients while there was also a reduced hyperemic flow velocity in patients with CTS-A. Conclusion: Most arterial phenomena in CTS patients could be attributable to concomitant amyloidosis, although endothelial dysfunction was present even in patients with CTS without amyloidosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...