Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091797

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.

2.
J Pept Sci ; : e3647, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091086

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic. Specifically, the method involved cross-linking STh to an 8-arm N-hydroxysuccinimide (NHS) ester-activated PEG cross-linker. A conjugate of STh with 8-arm structure was prepared, and its formation was confirmed through immunoblotting analysis. The impact of conjugation on STh epitopes was assessed using ELISAs with polyclonal and monoclonal antibodies targeting various epitopes of STh. Immunization of mice with the conjugate induced the production of anti-STh antibodies, exhibiting neutralizing activity against STh.

3.
Heliyon ; 10(12): e33038, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027442

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the main bacterial cause of diarrhea in weaned piglets. Baicalin-aluminum (BA) complex is the main active ingredient of Scutellaria baicalensis Georgi extracted-aluminum complex, which has been used to treat diarrhea in weaning piglets, however the underlying mechanism remains unclear. To investigate the effects of the BA complex on the regulation of porcine intestinal epithelial (IPEC-1) cells infected with ETEC, IPEC-1 cells were incubated with an ETEC bacterial strain at a multiplicity of infection of 1 for 6 h and then treated with different concentrations of the BA complex for 6 h. ETEC infection increased the levels of cAMP and cGMP, upregulated CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, and downregulated NHE4 mRNA in IPEC-1 cells. Treatment with the BA complex inhibited ETEC adhesion and the production of cAMP and cGMP, reduced CFTR mRNA expression, and increased NHE4 mRNA expression. Overall, the BA complex weakened the adhesion of ETEC to IPEC-1 cells, and inhibited cAMP/cGMP-CFTR signaling in IPEC-1 cells.

4.
Open Vet J ; 14(6): 1417-1425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39055761

RESUMEN

Background: Escherichia coli is one of the serious pathogens causing various infections in the animal field, such as neonatal calf diarrhea, which is responsible for mortality associated with diarrhea during the first days of life. Aim: Current work is aimed at designing an effective and safe multiepitope vaccine candidate against E. coli infection in calves based on the fimbrial protein K99 of Enterotoxigenic E. coli (ETEC) and Immuno-informatics. Methods: A conserved sequence of K99 protein was generated, and then highly antigenic, nonallergic, and overlapped epitopes were used to construct a multiepitope vaccine. Five THL, six MHC II, and four beta cell epitopes were targeted to create the candidate. The candidate vaccine was produced utilizing 15 epitopes and three types of linkers, two types of untranslated region (UTR) human hemoglobin subunit beta (HBB), UTR beta-globin (Rabb), and RpfE protein as an immunomodulation adjuvant. Results: Immuno-informatics analysis of the constructed protein showed that the protein was antigenic (antigenic score of 0.8841), stable, nonallergen, and soluble. Furthermore, the Immuno-informatics and physiochemical analysis of the constructed protein showed a stable, nonallergic, soluble, hydrophilic, and acidic PI (isoelectric point). of 9.34. Docking of the candidate vaccine with the toll-like receptor TLR3 was performed, and results showed a strong interaction between the immune receptor and the vaccine. Finally, the expression efficiency of the construct in E. coli was estimated via computational cloning of the vaccine sequence into Pet28a. Conclusion: Results of immunoinformatics and in silico approaches reveal that the designed vaccine is antigenic, stable, and able to bind to the immune cell receptors. Our results interpret the proposed multiepitope mRNA vaccine as a good preventive option against E. coli infection in calves.


Asunto(s)
Enfermedades de los Bovinos , Biología Computacional , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Animales , Bovinos , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Epítopos/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Modelos Moleculares , Inmunoinformática
5.
Front Microbiol ; 15: 1428287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983627

RESUMEN

This study mainly investigated the effects of berberine (BBR) on the bile acid metabolism in gut-liver axis and the microbial community in large intestine of weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC) by microbiome and metabolome analyses. Sixty-four piglets were randomly assigned to four groups including Control group, BBR group, ETEC group, and BBR + ETEC group. Dietary BBR supplementation upregulated the colonic mRNA expression of Occludin, Claudin-5, trefoil factor 3 (TFF3), and interleukin (IL)-10, and downregulated colonic IL-1ß and IL-8 mRNA expression in piglets challenged with ETEC K88 (p < 0.05). The hepatic non-targeted metabolome results showed that dietary BBR supplementation enriched the metabolic pathways of primary bile acid biosynthesis, tricarboxylic acid cycle, and taurine metabolism. The hepatic targeted metabolome analyses showed that BBR treatment increased the hepatic concentrations of taurocholic acid (TCA) and taurochenodeoxycholic acid (TDCA), but decreased the hepatic cholic acid (CA) concentration (p < 0.05). Further intestinal targeted metabolome analyses indicated that the deoxycholic acid (DCA), hyocholic acid (HCA), 7-ketodeoxycholic acid (7-KDCA), and the unconjugated bile acid concentrations in ileal mucosa was decreased by dietary BBR treatment (p < 0.05). Additionally, BBR treatment significantly upregulated the hepatic holesterol 7 α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) mRNA expression, and upregulated the ileal mRNA expression of farnesoid X receptor (FXR) and apical sodium-dependent bile acid transporter (ASBT) as well as the colonic mRNA expression of FXR, fibroblast growth factor19 (FGF19), takeda G protein-coupled receptor 5 (TGR5) and organic solute transporters beta (OST-ß) in piglets (p < 0.05). Moreover, the microbiome analysis showed that BBR significantly altered the composition and diversity of colonic and cecal microbiota community, with the abundances of Firmicutes (phylum), and Lactobacillus and Megasphaera (genus) significantly increased in the large intestine of piglets (p < 0.05). Spearman correlation analysis showed that the relative abundances of Megasphaera (genus) were positively correlated with Claudin-5, Occludin, TFF3, and hepatic TCDCA concentration, but negatively correlated with hepatic CA and glycocholic acid (GCA) concentration (p < 0.05). Moreover, the relative abundances of Firmicute (phylum) and Lactobacillus (genus) were positively correlated with hepatic TCDCA concentration (p < 0.05). Collectively, dietary BBR supplementation could regulate the gut microbiota and bile acid metabolism through modulation of gut-liver axis, and attenuate the decreased intestinal tight junction expression caused by ETEC, which might help maintain intestinal homeostasis in weaned piglets.

6.
Appl Environ Microbiol ; : e0074924, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082811

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) are significant pathogen in both cattle and pigs, causing diarrhea in these animals and leading to economic losses in the livestock industry. Understanding the dissimilarity in genotype, antimicrobial resistance (AMR), and virulence between bovine and swine ETEC is crucial for development of targeted preventive and therapeutic approaches for livestock. However, a comprehensive study on this area remains lacking. Here, we performed whole-genome sequencing-based analyses of bovine (n = 554) and swine (n = 623) ETEC collected in the United States over a 53-year period. We identified distinct ETEC genotypes (fimH type, O antigen, H antigen, sequence type) in cattle and pigs. Furthermore, specific AMR and virulence profiles were associated with bovine and swine ETEC. Compared to swine ETEC, bovine ETEC were less diverse in genotypes and had a significantly (P < 0.001) lower number of AMR genes per isolate but higher co-occurrence of Shiga toxin and enterotoxin genes. Our results provide an overview of the key genomic differences between bovine and swine ETEC in the United States, which might be attributed to host adaptation and antibiotic usage practice. Ongoing surveillance and research are essential to monitor the genetic diversity and AMR patterns of ETEC in different host species. IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea represent one of the most economically important diseases in the livestock industry. By analyzing over a thousand livestock-derived ETEC samples in the United States, our study unveiled a clear distinction in ETEC's genetic traits (i.e., genotypes, antimicrobial resistance [AMR], and virulence profiles) that might be tied to the different use of antibiotics in cattle and pigs, and the bacteria's adaptation to their specific animal hosts. This understanding is crucial for tailoring preventive and therapeutic strategies. It also highlights the significance of ongoing surveillance and research into the evolution of bacterial pathogens like ETEC in livestock by using advanced techniques such as whole-genome sequencing.

7.
Microorganisms ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930615

RESUMEN

This study aimed to evaluate the disruption of the swine gut microbiota and histopathological changes caused by infection with enterotoxigenic E. coli. Fecal samples were collected from piglets suffering from diarrhea post-recovery and healthy animals. Intestinal tissues were collected for histopathological changes. The results revealed histopathological changes mainly in the ileum of the infected animals compared to those in the ileum of the control and recovered animals. The operational taxonomic units (OTUs) revealed that the E. coli diarrheal group exhibited the highest bacterial richness. Principal coordinate analysis (PCoA) corroborated the presence of dysbiosis in the gut microbiota following E. coli-induced diarrhea. While the normal control and infected groups displayed slight clustering, the recovery group formed a distinct cluster with a distinct flora. Bacteroidetes, Firmicutes, and Fusobacteria were the dominant phyla in both the healthy and recovered piglets and in the diarrheal group. LEfSe and the associated LDA score analysis revealed that the recovered group exhibited dominance of the phyla Euryarchaeota and Bacteroidota, while groups N and I showed dominance of the phyla Firmicutes and Fusobacteriota, respectively. The LDA scores highlighted a significant expression of the Muribaculacea family in group R. The obtained findings will help in understanding the microbiome during swine colibacillosis, which will support control of the outbreaks.

8.
Animal Model Exp Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828754

RESUMEN

BACKGROUND: The forest musk deer, a rare fauna species found in China, is famous for its musk secretion which is used in selected Traditional Chinese medicines. However, over-hunting has led to musk deer becoming an endangered species, and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis. Accumulating evidence has demonstrated that Akkermannia muciniphila (AKK) is a promising probiotic, and we wondered whether AKK could be used as a food additive in animal breeding programmes to help prevent intestinal diseases. METHODS: We isolated one AKK strain from musk deer feces (AKK-D) using an improved enrichment medium combined with real-time PCR. After confirmation by 16S rRNA gene sequencing, a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability, simulated gastrointestinal fluid tolerance, acid and bile salt resistance, self-aggregation ability, hydrophobicity, antibiotic sensitivity, hemolysis, harmful metabolite production, biofilm formation ability, and bacterial adhesion to gastrointestinal mucosa. RESULTS: The AKK-D strain has a probiotic function similar to that of the standard strain in humans (AKK-H). An in vivo study found that AKK-D significantly ameliorated symptoms in the enterotoxigenic Escherichia coli (ETEC)-induced murine diarrhea model. AKK-D improved organ damage, inhibited inflammatory responses, and improved intestinal barrier permeability. Additionally, AKK-D promoted the reconstitution and maintenance of the homeostasis of gut microflora, as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae, Muribaculum, and unclassified f_Lachnospiaceae compared with the diarrhea model mice. CONCLUSION: Taken together, our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding, although further extensive systematic research is still needed.

9.
Appl Environ Microbiol ; 90(7): e0080724, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940562

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Escherichia coli Enterotoxigénica/virología , Escherichia coli Enterotoxigénica/genética , Animales , Porcinos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/virología , Especificidad del Huésped , Diarrea/microbiología , Diarrea/virología , Diarrea/veterinaria , Genoma Viral , Colifagos/genética , Colifagos/fisiología , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Factores de Virulencia/genética
10.
Anim Nutr ; 17: 110-122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766519

RESUMEN

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

11.
Microorganisms ; 12(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792795

RESUMEN

Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10-2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10-4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria-polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal-mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.

12.
J Anim Sci Biotechnol ; 15(1): 79, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760843

RESUMEN

BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.

13.
Trop Anim Health Prod ; 56(5): 179, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809309

RESUMEN

We evaluated the effects of supplementing yeast mannan-reach-fraction on growth performance, jejunal morphology and lymphoid tissue characteristics in weaned piglets challenged with E. Coli F4. A total of 20 crossbred piglets were used. At weaning, piglets were assigned at random to one of four groups: piglets challenged and fed the basal diet supplemented with yeast mannan-rich fraction (C-MRF, n = 5); piglets challenged and fed the basal diet (C-BD, n = 5); piglets not challenged and fed the basal diet supplemented with yeast mannan-rich fraction (NC-MRF, n = 5), and piglets not challenged and fed the basal diet (NC-BD). Each dietary treatment had five replicates. On days 4, 5 and 10, piglets were orally challenged with 108 CFU/mL of E. Coli F4. C-MRF piglets had higher BW (p = 0.002; interactive effect) than C-BD piglets. C-MRF piglets had higher (p = 0.02; interactive effect) ADG in comparison with C-BD piglets. C-MRF piglets had higher (p = 0.04; interactive effect) ADFI than C-BD piglets. The diameter of lymphoid follicles was larger (p = 0.010; interactive effect) in the tonsils of C-MRF piglets than C-BD piglets. Lymphoid cells proliferation was greater in the mesenteric lymphnodes and ileum (p = 0.04 and p = 0.03, respectively) of C-MRF piglets. A reduction (p > 0.05) in E. Coli adherence in the ileum of piglets fed MRF was observed. In conclusion, the results of the present study demonstrate that dietary yeast mannan-rich fraction supplementation was effective in protecting weaned piglets against E. Coli F4 challenge.


Asunto(s)
Suplementos Dietéticos , Escherichia coli Enterotoxigénica , Mananos , Levaduras , Animales , Porcinos/crecimiento & desarrollo , Porcinos/microbiología , Infecciones por Escherichia coli/veterinaria , Enfermedades de los Porcinos/microbiología , Yeyuno/crecimiento & desarrollo , Destete , Crianza de Animales Domésticos , Tejido Linfoide/fisiología
14.
Microorganisms ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674674

RESUMEN

Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).

15.
Transl Anim Sci ; 8: txae050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665217

RESUMEN

During the bacterial selection, isolate PF9 demonstrated tolerance to low pH and high bile salt and an ability to extend the lifespan of Caenorhabditis elegans infected with enterotoxigenic Escherichia coli (ETEC; P < 0.05). Thirty-two weaned piglets susceptible to ETEC F4 were randomly allocated to four treatments as follows: 1) non-challenged negative control group (NNC; basal diet and piglets gavaged with phosphate-buffered saline), 2) negative control group (NC; basal diet and piglets challenged with ETEC F4, 3 × 107 CFU per pig), 3) positive control (PC; basal diet + 80 mg·kg-1 of avilamycin and piglets challenged with ETEC F4), and 4) probiotic candidate (PF9; control basal diet + 2.5 × 109 CFU·kg-1 diet of B. licheniformis PF9 and piglets challenged with ETEC F4). The infection of ETEC F4 decreased average daily gain and gain:feed in the NC group when compared to the NNC group (P < 0.05). The inoculation of ETEC F4 induced severe diarrhea at 3 h postinoculum (hpi), 36, 40 hpi in the NC group when compared to the NNC group (P < 0.05). The supplementation of B. licheniformis PF9 significantly relieved diarrhea severity at 3 hpi when compared to the NC group (P < 0.05). The inoculation of ETEC F4 reduced duodenal, jejunal, and ileal villus height (VH) in the NC group when compared to the NNC group. A significant (P < 0.05) decrease was detected in the duodenal VH in the PC and NNC groups. Moreover, the NNC group had a reduced relative mRNA level of Na+-glucose cotransporter 1 (SGLT1) when compared to the NC group (P < 0.05). Compared to the NC and NNC groups, the supplementation of B. licheniformis PF9 increased the relative mRNA levels of aminopeptidase N, occludin, zonula occludens-1, and SGLT1 (P < 0.05). The supplementation of B. licheniformis PF9 also significantly increased the relative mRNA level of excitatory amino acid transporter 1 when compared to the NC group (P < 0.05). Piglets supplemented with B. licheniformis PF9 showed lower relative abundance of Bacteroidetes in the colon than piglets from the NNC group (P < 0.05). The NNC group had a higher relative abundance of Firmicutes in the ileum than all the challenged piglets (P < 0.05); however, a lower relative abundance of Proteobacteria in the ileum and colon was observed in the NC group (P < 0.05). This study provides evidence that B. licheniformis PF9 has the potential to improve the gut health of piglets under challenging conditions.

16.
Front Public Health ; 12: 1332319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584932

RESUMEN

Background: Enterotoxigenic E. coli (ETEC) is a leading cause of diarrheal morbidity and mortality in children, although the data on disease burden, epidemiology, and impact on health at the community level are limited. Methods: In a longitudinal birth cohort study of 345 children followed until 24 months of age in Lima, Peru, we measured ETEC burden in diarrheal and non-diarrheal samples using quantitative PCR (LT, STh, and STp toxin genes), studied epidemiology and measured anthropometry in children. Results: About 70% of children suffered from one or more ETEC diarrhea episodes. Overall, the ETEC incidence rate (IR) was 73 per 100 child-years. ETEC infections began early after birth causing 10% (8.9-11.1) ETEC-attributable diarrheal burden at the population level (PAF) in neonates and most of the infections (58%) were attributed to ST-ETEC [PAF 7.9% (1.9-13.5)] and LT + ST-ETEC (29%) of which all the episodes were associated with diarrhea. ETEC infections increased with age, peaking at 17% PAF (4.6-27.7%; p = 0.026) at 21 to 24 months. ST-ETEC was the most prevalent type (IR 32.1) with frequent serial infections in a child. The common colonization factors in ETEC diarrhea cases were CFA/I, CS12, CS21, CS3, and CS6, while in asymptomatic ETEC cases were CS12, CS6 and CS21. Only few (5.7%) children had repeated infections with the same combination of ETEC toxin(s) and CFs, suggested genotype-specific immunity from each infection. For an average ETEC diarrhea episode of 5 days, reductions of 0.060 weight-for-length z-score (0.007 to 0.114; p = 0.027) and 0.061 weight-for-age z-score (0.015 to 0.108; p = 0.009) were noted in the following 30 days. Conclusion: This study showed that ETEC is a significant pathogen in Peruvian children who experience serial infections with multiple age-specific pathotypes, resulting in transitory growth impairment.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Recién Nacido , Humanos , Escherichia coli Enterotoxigénica/genética , Perú/epidemiología , Estudios de Cohortes , Diarrea/epidemiología , Enterotoxinas/genética , Infecciones por Escherichia coli/epidemiología
17.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612450

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Asunto(s)
Anticuerpos Biespecíficos , Escherichia coli Enterotoxigénica , Inmunoglobulinas , Anticuerpos de Cadena Única , Animales , Porcinos , Anticuerpos de Cadena Única/farmacología , Pollos , Diarrea/veterinaria
18.
J Clin Microbiol ; 62(6): e0057023, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38656142

RESUMEN

The identification of pathogens is essential for effective surveillance and outbreak detection, which lately has been facilitated by the decreasing cost of whole-genome sequencing (WGS). However, extracting relevant virulence genes from WGS data remains a challenge. In this study, we developed a web-based tool to predict virulence-associated genes in enterotoxigenic Escherichia coli (ETEC), which is a major concern for human and animal health. The database includes genes encoding the heat-labile toxin (LT) (eltA and eltB), heat-stable toxin (ST) (est), colonization factors CS1 through 30, F4, F5, F6, F17, F18, and F41, as well as toxigenic invasion and adherence loci (tia, tibAC, etpBAC, eatA, yghJ, and tleA). To construct the database, we revised the existing ETEC nomenclature and used the VirulenceFinder webtool at the CGE website [VirulenceFinder 2.0 (dtu.dk)]. The database was tested on 1,083 preassembled ETEC genomes, two BioProjects (PRJNA421191 with 305 and PRJNA416134 with 134 sequences), and the ETEC reference genome H10407. In total, 455 new virulence gene alleles were added, 50 alleles were replaced or renamed, and two were removed. Overall, our tool has the potential to greatly facilitate ETEC identification and improve the accuracy of WGS analysis. It can also help identify potential new virulence genes in ETEC. The revised nomenclature and expanded gene repertoire provide a better understanding of the genetic diversity of ETEC. Additionally, the user-friendly interface makes it accessible to users with limited bioinformatics experience. IMPORTANCE: Detecting colonization factors in enterotoxigenic Escherichia coli (ETEC) is challenging due to their large number, heterogeneity, and lack of standardized tests. Therefore, it is important to include these ETEC-related genes in a more comprehensive VirulenceFinder database in order to obtain a more complete coverage of the virulence gene repertoire of pathogenic types of E. coli. ETEC vaccines are of great importance due to the severity of the infections, primarily in children. A tool such as this could assist in the surveillance of ETEC in order to determine the prevalence of relevant types in different parts of the world, allowing vaccine developers to target the most prevalent types and, thus, a more effective vaccine.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Internet , Factores de Virulencia , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli Enterotoxigénica/clasificación , Factores de Virulencia/genética , Humanos , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Bases de Datos Genéticas , Virulencia/genética , Genoma Bacteriano/genética , Secuenciación Completa del Genoma , Toxinas Bacterianas/genética , Animales , Biología Computacional/métodos , Enterotoxinas/genética
19.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574824

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is recognized globally as a major gastrointestinal pathogen that impairs intestinal function. ETEC infection can lead to oxidative stress and disruption of intestinal integrity. The present study investigated the mechanism of increased oxidative stress and whether restoration of antioxidant defense could improve intestinal integrity in a piglet model with ETEC infection. Weaned piglets were divided into three groups: control, ETEC-infection and ETEC-infection with antibiotic supplementation. The infection caused a significant elevation of serum diamine oxidase activity and D-lactate levels coupled with a reduced intestinal (mid-jejunum) tight-junction protein expression, suggesting increased intestinal permeability and impaired gut function. The infection also inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) activation, decreased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 (SOD1), and heme oxygenase-1 (HO-1) in the intestine. This led to a decreased antioxidant glutathione level and an increased lipid peroxidation in the intestine and serum, indicating oxidative stress. The infection stimulated the expression of pro-inflammatory cytokines (IL-6, TNF-α). Antibiotic supplementation attenuated oxidative stress, in part, through restoration of glutathione levels and antioxidant enzyme expression in the intestine. Such a treatment enhanced tight-junction protein expression and improved intestinal function. Furthermore, induction of oxidative stress in Caco2 cells by hydrogen peroxide inhibited tight-junction protein expression and stimulated inflammatory cytokine expression. Glutathione supplementation effectively attenuated oxidative stress and restored tight-junction protein expression. These results suggest that downregulation of Nrf2 activation may weaken antioxidant defense and increase oxidative stress in the intestine. Mitigation of oxidative stress can improve intestinal function after infection.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Mucosa Intestinal , Estrés Oxidativo , Animales , Humanos , Antioxidantes/metabolismo , Células CACO-2 , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Glutatión/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/microbiología , Factor 2 Relacionado con NF-E2/metabolismo , Porcinos
20.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543938

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA