Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
J Biomed Sci ; 31(1): 65, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943128

RESUMEN

BACKGROUND: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS: Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS: This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.


Asunto(s)
Enterovirus Humano A , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Enterovirus Humano A/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Replicación Viral
2.
MedComm (2020) ; 5(6): e587, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840773

RESUMEN

Human enterovirus A71 (EV-A71) is a significant etiological agent responsible for epidemics of hand, foot, and mouth disease (HFMD) in Asia-Pacific regions. There are presently no licensed antivirals against EV-A71, and the druggable target for EV-A71 remains very limited. The phenotypic hit 10,10'-bis(trifluoromethyl) marinopyrrole A derivative, herein termed MPA-CF3, is a novel potent small-molecule inhibitor against EV-A71, but its pharmacological target(s) and antiviral mechanisms are not defined. Here, quantitative chemoproteomics deciphered the antiviral target of MAP-CF3 as host factor coatomer subunit zeta-1 (COPZ1). Mechanistically, MPA-CF3 disrupts the interaction of COPZ1 with the EV-A71 nonstructural protein 2C by destabilizing COPZ1 upon binding. The destruction of this interaction blocks the coatomer-mediated transport of 2C to endoplasmic reticulum, and ultimately inhibits EV-A71 replication. Taken together, our study disclosed that MPA-CF3 can be a structurally novel host-targeting anti-EV-A71 agent, providing a structural basis for developing the COPZ1-targeting broad-spectrum antivirals against enteroviruses. The mechanistic elucidation of MPA-CF3 against EV-A71 may offer an alternative COPZ1-involved therapeutic pathway for enterovirus infection.

3.
Emerg Microbes Infect ; 13(1): 2368221, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38932432

RESUMEN

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.


Asunto(s)
Enterovirus Humano A , Proteínas de Choque Térmico HSP27 , Ribonucleoproteína Nuclear Heterogénea A1 , Replicación Viral , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Fosforilación , Humanos , Replicación Viral/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Antivirales/farmacología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Serina/metabolismo , Células HeLa , Biosíntesis de Proteínas , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Choque Térmico
4.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931452

RESUMEN

The open-source drug library, namely, MMV Pandemic Response Box, contains 153 antiviral agents, a chemically and pharmacologically diverse mixture of early-stage, emerging anti-infective scaffolds, and mature compounds currently undergoing clinical development. Hence, the Pandemic Response Box might contain compounds that bind and interfere with target molecules or cellular pathways that are conserved or shared among the closely related viruses with enterovirus A71 (EV-A71). This study aimed to screen antiviral agents included in the Pandemic Response Box for repurposing to anti-EV-A71 activity and investigate the inhibitory effects of the compounds on viral replication. The compounds' cytotoxicity and ability to rescue infected cells were determined by % cell survival using an SRB assay. The hit compounds were verified for anti-EV-A71 activity by virus reduction assays for viral RNA copy numbers, viral protein synthesis, and mature particle production using qRT-PCR, Western blot analysis, and CCID50 assay, respectively. It was found that some of the hit compounds could reduce EV-A71 genome replication and protein synthesis. D-D7 (2-pyridone-containing human rhinovirus 3C protease inhibitor) exhibited the highest anti-EV-A71 activity. Even though D-D7 has been originally indicated as a polyprotein processing inhibitor of human rhinovirus 3C protease, it could be repurposed as an anti-EV-A71 agent.

5.
Viruses ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932201

RESUMEN

In this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract. Co-infection with SARS-CoV-2 and LEV-8 or EV-A71 also reduced the severity of clinical manifestations of the SARS-CoV-2 infection in the animals. Additionally, the histological data illustrated that co-infection with strain LEV8 of coxsackievirus A7 decreased the level of pathological changes induced by SARS-CoV-2 in the lungs. Research into the chemokine/cytokine profile demonstrated that the studied enteroviruses efficiently triggered this part of the antiviral immune response, which is associated with the significant inhibition of SARS-CoV-2 infection. These results demonstrate that there is significant viral interference between the studied strain LEV-8 of coxsackievirus A7 or enterovirus A71 and SARS-CoV-2 in vitro and in vivo.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Enterovirus Humano A , Mesocricetus , SARS-CoV-2 , Replicación Viral , Animales , Chlorocebus aethiops , Células Vero , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/inmunología , Enterovirus Humano A/fisiología , Enterovirus Humano A/patogenicidad , Coinfección/virología , Pulmón/virología , Pulmón/patología , Humanos , Citocinas/metabolismo , Cricetinae
6.
J Cell Biochem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720641

RESUMEN

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

7.
Cureus ; 16(4): e58704, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38779280

RESUMEN

Background Hand, foot, and mouth disease (HFMD) is a viral illness commonly seen in children under five years of age, characterized by typical manifestations such as oral lesions and rashes on the hands and feet. Coxsackievirus A-16 (CV-A16) and Enterovirus A-71 (EV-A71) are the major etiological agents of this disease. Over the past two decades, there have been several outbreaks of HFMD all across India. As there is no chemoprophylaxis available for the disease, it becomes even more significant to conduct regular research and surveillance for HFMD. Aim and objective To observe the clinico-epidemiological profile along with constitutional symptoms in HFMD patients attending pediatric OPD. Methods This hospital-based prospective observational study was conducted in the Post Graduate Department of Pediatrics, Acharya Shri Chander College of Medical Sciences and Hospital (ASCOMS & H), Sidra, Jammu and Kashmir, India, over six months from April to September 2023. A total of 132 children with symptoms of HFMD visited the pediatric OPD. After using inclusive and exclusive criteria, we selected a sample size of 112 children with HFMD. The descriptive data were expressed in terms of percentages and proportions, and their graphical representation was done using MS Excel (Microsoft Corporation, Redmond, Washington, United States). Results Among the 112 HFMD patients examined, the highest peak was seen in August, followed by another one in September. Most of the cases were seen in the age group of zero to three years, and it was observed that there was a linear fall in the number of cases with the increase in age. Nearly 61% of cases were male, showing a slight male preponderance. Vesiculopapular rash on the hand and foot was the most common clinical characteristic, whereas painful deglutition was noted to be the most common constitutional symptom in HFMD patients. About 27% had a positive family history, and nail changes post-recovery were present in 1.79% of cases during their regular follow-ups. Conclusions This study reveals that HFMD cases surged in August and September, with a history of contact in one-fourth of cases. Disease is seen more commonly in children under three years of age, and the incidence of cases decreases with the increase in age. The illness is usually contagious and can spread quickly; therefore, more awareness programs should be done to educate parents and promote hygiene to prevent contact cases.

8.
Hum Vaccin Immunother ; 20(1): 2330163, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38544389

RESUMEN

The Enterovirus A71 (EV-A71) vaccine was introduced in China in December 2015 as a preventive measure against hand, foot, and mouth disease (HFMD) caused by EV-A71. However, the effectiveness of the vaccine (VE) in real-world settings needs to be evaluated. We conducted a test-negative case-control study to assess the effectiveness of EV-A71 vaccines in preventing EV-A71-associated HFMD. Children aged 6-71 months with HFMD were enrolled as participants. The case group comprised those who tested positive for EV-A71, while the control group comprised those who tested negative for EV-A71. To estimate VE, a logistic regression model was employed, adjusting for potential confounders including age, gender, and clinical severity. In total, 3223 children aged 6 to 71 months were included in the study, with 162 in the case group and 3061 in the control group. The proportion of children who received EV-A71 vaccination was significantly lower in the case group compared to the control group (p < .001). The overall VEadj was estimated to be 90.8%. The VEadj estimates for partially and fully vaccinated children were 90.1% and 90.9%, respectively. Stratified by age group, the VEadj estimates were 88.7% for 6 to 35-month-olds and 95.5% for 36 to 71-month-olds. Regarding disease severity, the VEadj estimates were 86.3% for mild cases and 100% for severe cases. Sensitivity analysis showed minimal changes in the VE point estimates, with most changing by no more than 1% point. Our study demonstrates a high level of vaccine effectiveness against EV-A71-HFMD, especially in severe cases. Active promotion of EV-A71 vaccination is an effective strategy in preventing EV-A71 infections.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Enfermedad de Boca, Mano y Pie/prevención & control , Estudios de Casos y Controles , Vacunas de Productos Inactivados , China/epidemiología , Antígenos Virales
9.
Vaccine ; 42(9): 2317-2325, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38433065

RESUMEN

BACKGROUND: Vaccination has been proven effective against infection with enterovirus A71 (EV-A71) in clinical trials, but vaccine effectiveness in real-world situations remains incompletely understood. Furthermore, it is not clear whether previous vaccination will result in symptom attenuation among post-vaccinated cases. METHODS: Based on long-term data extracted from the only designed referral hospital for infectious diseases, we used a test-negative case-control design and multivariate logistic regression models to analyze the effectiveness of EV-A71 vaccine against hand, foot and mouth disease (HFMD). And then, generalized linear regression models were used to evaluate the associations between prior vaccination and disease profiles. RESULTS: We selected 4883 inpatients for vaccine efficacy estimations and 2188 inpatients for disease profile comparisons. Vaccine effectiveness against EV-A71-induced HFMD for complete vaccination was 63.4 % and 51.7 % for partial vaccination. The vaccine effectiveness was higher among cases received the first dose within 12 months. No protection was observed against coxsackievirus (CV) A6-, CV-A10- or CV-A16-associated HFMD among children regardless of vaccination status. Completely vaccinated cases had shorter hospital stay and disease course compared to unvaccinated cases (P < 0.05). CONCLUSIONS: These findings reiterate the need to continue the development of a multivalent vaccine or combined vaccines, and have implications for introducing optimized vaccination strategies.


Asunto(s)
Enfermedades Transmisibles , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Niño , Humanos , Enfermedad de Boca, Mano y Pie/prevención & control , Infecciones por Enterovirus/prevención & control , Vacunación , Anticuerpos Antivirales , Antígenos Virales , Vacunas Combinadas , China
10.
Viruses ; 16(3)2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38543718

RESUMEN

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Asunto(s)
Desoxiadenosinas , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Chlorocebus aethiops , Lactante , Niño , Humanos , Preescolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacología , Células CACO-2 , Replicación Viral , Infecciones por Enterovirus/tratamiento farmacológico , Antígenos Virales , Antivirales/farmacología
11.
Microbiol Spectr ; 12(4): e0333223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441464

RESUMEN

Enterovirus A89 (EV-A89) is an unconventional strain belonging to the Enterovirus A species. Limited research has been conducted on EV-A89, leaving its biological and pathogenic properties unclear. Developing reverse genetic tools for EV-A89 would help to unravel its infection mechanisms and aid in the development of vaccines and anti-viral drugs. In this study, an infectious clone for EV-A89 was successfully constructed and recombinant enterovirus A89 (rEV-A89) was generated. The rEV-A89 exhibited similar characteristics such as growth curve, plaque morphology, and dsRNA expression with parental strain. Four amino acid substitutions were identified in the EV-A89 capsid, which were found to enhance viral infection. Mechanistic studies revealed that these substitutions increased the virus's cell-binding ability. Establishing reverse genetic tools for EV-A89 will significantly contribute to understanding viral infection and developing anti-viral strategies.IMPORTANCEEnterovirus A species contain many human pathogens and have been classified into conventional cluster and unconventional cluster. Most of the research focuses on various conventional members, while understanding of the life cycle and infection characteristics of unconventional viruses is still very limited. In our study, we constructed the infectious cDNA clone and single-round infectious particles for the unconventional EV-A89, allowing us to investigate the biological properties of recombinant viruses. Moreover, we identified key amino acids residues that facilitate EV-A89 infection and elucidate their roles in enhancing viral binding to host cells. The establishment of the reverse genetics system will greatly facilitate future study on the life cycle of EV-A89 and contribute to the development of prophylactic vaccines and anti-viral drugs.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Vacunas , Humanos , Enterovirus/genética , Enterovirus Humano A/genética , Antígenos Virales , Sustitución de Aminoácidos , Células Clonales , Antivirales/farmacología
12.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174926

RESUMEN

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Asunto(s)
Proteínas de la Cápside , Enterovirus Humano A , Infecciones por Enterovirus , ARN Polimerasa Dependiente del ARN , Animales , Ratones , Anticuerpos Antivirales/inmunología , Codón , Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Vacunas Atenuadas , Proteínas de la Cápside/genética , Inmunidad Humoral , Inmunidad Celular , Anticuerpos Neutralizantes/inmunología , Vacunas Virales , Ratones Endogámicos ICR , Ratones Endogámicos BALB C , ARN Polimerasa Dependiente del ARN/genética
13.
Virology ; 591: 109989, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38219371

RESUMEN

Enteroviruses (EVs), comprise a genus in the Picornaviridae family, which have been shown to be neurotropic and can cause various neurological disorders or long-term neurological condition, placing a huge burden on society and families. The blood-brain barrier (BBB) is a protective barrier that prevents dangerous substances from entering the central nervous system (CNS). Recently, numerous EVs have been demonstrated to have the ability to disrupt BBB, and further lead to severe neurological damage. However, the precise mechanisms of BBB disruption associated with these EVs remain largely unknown. In this Review, we focus on the molecular mechanisms of BBB dysfunction caused by EVs, emphasizing the invasiveness of enterovirus A71 (EVA71), which will provide a research direction for further treatment and prevention of CNS disorders.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Barrera Hematoencefálica , Enterovirus/fisiología , Sistema Nervioso Central , Transporte Biológico
15.
J Adv Res ; 56: 137-156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37001813

RESUMEN

BACKGROUND: Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW: For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW: At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus Humano A/genética , Infecciones por Enterovirus/tratamiento farmacológico , Desarrollo de Medicamentos , Antivirales/farmacología , Antivirales/uso terapéutico
16.
Lab Invest ; 104(2): 100298, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38008182

RESUMEN

Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.


Asunto(s)
Encefalitis , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Niño , Humanos , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico
17.
Sci Total Environ ; 912: 169375, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38110101

RESUMEN

Hand, foot, and mouth disease (HFMD) is contagious and predominantly affects children below the age of five. HFMD-associated serotypes of Enterovirus A (EVA) family include EVA71, Coxsackievirus A type 6 (CVA6), 10 (CVA10), and 16 (CVA16). Although prevalent in numerous Asian countries, studies on HFMD-causing agents in wastewater are scarce. This study aimed to conduct wastewater surveillance in various Asian communities to detect and quantify serotypes of EVA associated with HFMD. In total, 77 wastewater samples were collected from Indonesia, the Philippines, Thailand, and Vietnam from March 2022 to February 2023. The detection ratio for CVA6 RNA in samples from Vietnam was 40 % (8/20). The detection ratio for CVA6 and EVA71 RNA each was 25 % (5/20) for the Indonesian samples, indicating the need for clinical surveillance of CVA6, as clinical reports have been limited. For the Philippines, 12 % (2/17) of the samples were positive for CVA6 and EVA71 RNA each, with only one quantifiable sample each. Samples from Thailand had a lower detection ratio (1/20) for CVA6 RNA, and the concentration was unquantifiable. Conversely, CVA10 and CVA16 RNAs were not detected in any of the samples. The minimum and maximum concentrations of CVA6 RNA were 2.7 and 3.9 log10 copies/L and those for EVA71 RNA were 2.5 and 4.9 log10 copies/L, respectively. This study underscores the importance of wastewater surveillance in understanding the epidemiology of HFMD-associated EVA serotypes in Asian communities. Long-term wastewater surveillance is recommended to monitor changes in dominant serotypes, understand seasonality, and develop effective prevention and control strategies for HFMD.


Asunto(s)
Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Enfermedad de Boca, Mano y Pie/epidemiología , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , ARN , Tailandia/epidemiología , China/epidemiología , Filogenia
18.
J Virol ; 97(12): e0092823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38047713

RESUMEN

IMPORTANCE: Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.


Asunto(s)
Antivirales , Enterovirus , Inhibidores de Proteasa Viral , Proteasas Virales , Antivirales/farmacología , Antivirales/química , Proteolisis , Proteasas Virales/metabolismo , Inhibidores de Proteasa Viral/farmacología , Enterovirus/efectos de los fármacos , Enterovirus/fisiología , Poliproteínas/metabolismo
19.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110940

RESUMEN

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Asunto(s)
Enterovirus Humano A , Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Reishi , Niño , Animales , Humanos , Ratones , Enterovirus Humano D/genética , Enterovirus Humano A/genética , Vacunas Combinadas , Antígenos Virales , Inmunoglobulina A , Inmunoglobulina G
20.
Front Pharmacol ; 14: 1251731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954857

RESUMEN

Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...