Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Front Microbiol ; 15: 1434921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364167

RESUMEN

High lead (Pb) levels in agricultural soil and wastewater threaten ecosystems and organism health. Microbial remediation is a cost-effective, efficient, and eco-friendly alternative to traditional physical or chemical methods for Pb remediation. Previous research indicates that micro-organisms employ various strategies to combat Pb pollution, including biosorption, bioprecipitation, biomineralization, and bioaccumulation. This study delves into recent advancements in Pb-remediation techniques utilizing bacteria, fungi, and microalgae, elucidating their detoxification pathways and the factors that influence Pb removal through specific case studies. It investigates how bacteria immobilize Pb by generating nanoparticles that convert dissolved lead (Pb-II) into less harmful forms to mitigate its adverse impacts. Furthermore, the current review explores the molecular-level mechanisms and genetic engineering techniques through which microbes develop resistance to Pb. We outline the challenges and potential avenues for research in microbial remediation of Pb-polluted habitats, exploring the interplay between Pb and micro-organisms and their potential in Pb removal.

2.
Ecotoxicol Environ Saf ; 285: 117063, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299213

RESUMEN

Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.

3.
Biomolecules ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199346

RESUMEN

The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Compuestos de Amonio Cuaternario , Purificación del Agua , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Incrustaciones Biológicas/prevención & control , Biopelículas/efectos de los fármacos , Purificación del Agua/métodos , Polímeros/química , Polímeros/farmacología , Líquidos Iónicos/química , Líquidos Iónicos/toxicidad , Líquidos Iónicos/farmacología
4.
Environ Sci Technol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018385

RESUMEN

Current toxicity screening approaches to evaluate the vast number of environmental chemicals that require assessment are hampered due to their significant costs, time requirements, and reliance on live animal testing. The aim of the present study was to develop an adverse outcome pathway (AOP)-anchored transcriptome analysis (AATA) catalogue to expedite the discovery of environmental toxicants. 437 AOPs from the AOPwiki (https://aopwiki.org/) and 2280 transcriptomics data sets from NCBI Gene Expression Omnibus (GEO) and EMBL-EBI ArrayExpress (AE) repositories were comprehensively reviewed and analyzed. By using the differentially expressed molecular key event (mKE) genes as connection nodes, we created a large-scale environmental substance─target gene (mKE)─predicted adverse outcomes (SGAs) network that included 78 substances, 1099 genes, and 354 adverse outcomes (AOs). To validate the reliability of the network, comprehensive literature verification was conducted. We demonstrated that 164 of the 354 AOs identified have been previously characterized in the literature. The results for 136 of these AOs were consistent with the predictions of the AATA catalogue, representing an accuracy rate of 82.9%. Besides, distinct patterns in molecular KEs and AOs among categories of substances, such as biocides and metals, were demonstrated. Some representative substances, including atrazine and copper, pose significant risks to fish at various levels of biological organization. Moreover, experimental verification of the AATA predictions was conducted, including exposures of zebrafish to perfluorooctanesulfonate, cresyl diphenyl phosphate, and lanthanum. Results demonstrated consistency with predictions of the AATA catalogue, with an accuracy rate of 92.3%. Collectively, the present findings support the AATA catalogue as an efficient and promising platform for identifying environmental toxicants to fish and thereby provide novel insights into the understanding of potential risks of environmental contaminants.

5.
Toxicol Res (Camb) ; 13(3): tfae077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38939724

RESUMEN

INTRODUCTION: The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS: Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS: The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.

6.
Sci Total Environ ; 946: 174036, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38889824

RESUMEN

Pharmaceuticals (PhACs) are increasingly detected in aquatic ecosystems, yet their effects on biota remain largely unknown. The environmentally relevant concentrations of many PhACs may not result in individual-level responses, like mortality or growth inhibition, traditional toxicity endpoints. However, this doesn't imply the absence of negative effects on biota. Metabolomics offers a more sensitive approach, detecting responses at molecular and cellular levels and providing mechanistic understanding of adverse effects. We evaluated bioaccumulation and metabolic alterations in a benthic ostracod, Heterocypris incongruens, exposed to a mixture of five PhACs (carbamazepine, tiapride, tolperisone, propranolol and amlodipine) at environmentally relevant concentrations for 7 days using liquid chromatography coupled with mass spectrometry. The selection of PhACs was based, among other factors, on risk quotient values determined using toxicological data available in the literature and concentrations of PhACs quantified in our previous research in the sediments of the Odra River estuary. This represents a novel approach to PhACs selection for metabolomic studies that considers strictly quantitative data. Amlodipine and tolperisone exhibited the highest bioaccumulation. Significant impacts were observed in Alanine, aspartate and glutamate metabolism, Starch and sucrose metabolism, Arginine biosynthesis, Histidine metabolism, Tryptophan metabolism, Glycerophospholipid metabolism, and Glutathione metabolism pathways. Most of the below-individual-level responses were likely nonspecific and related to dysregulation in energy metabolism and oxidative stress response. Additionally, some pharmaceutical-specific responses were also observed. Therefore, untargeted metabolomics can be used to detect metabolic changes resulting from environmentally relevant concentrations of PhACs in aquatic ecosystems and to understand their underlying mechanism.


Asunto(s)
Crustáceos , Metabolómica , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Crustáceos/efectos de los fármacos , Crustáceos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Monitoreo del Ambiente , Bioacumulación
7.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729377

RESUMEN

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Asunto(s)
Fluorocarburos , Hiperplasia Prostática , Masculino , Fluorocarburos/sangre , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/sangre , Aprendizaje Automático , Ácidos Alcanesulfónicos/sangre , Antígeno Prostático Específico/sangre
8.
Ann Med Surg (Lond) ; 86(5): 3005-3008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694375

RESUMEN

Introduction and importance: Teucrium polium is one of the aromatic plants that grows in the Mediterranean region, and had been used as an herbal treatment for diabetes due to its hypoglycaemia effect. Although this plant is being studied now for its therapeutic role, its side effects are not taken enough into consideration, so this unique case can shed the light on serious toxic effects of this plant. Case presentation: A 68-year-old woman presented to the hospital with generalized fatigue, malaise, nausea, vomiting, abdominal pain, polydipsia, polyuria, breathlessness, and no defecation for 2 days after drinking big amounts of teucrium polium. The diagnosis was diabetic ketoacidosis (DKA), complete heart block, acute liver and kidney damage, and urinary tract infection (UTI). The patient was admitted to the ICU and treated for the DKA with an insulin pump, an antibiotic treatment for UTI, in addition to a dopamine pump and atropine, and then a temporary pacemaker was placed. The patient's DKA, liver and kidney damage were improved on day 9, heart rate returned normal and she was discharged to insert a permanent pacemaker. However, the patient passed away at the end. Clinical discussion: Most studies made on this plant focused on the hypoglycaemia effect, with no attention to its toxic effects, so only few studies showed that teucrium polium can cause hepatic, renal toxicity and hyperglycaemia and most of them were studied in animals. While cardiac toxicity has never been noticed before. Conclusion: For this reason, herbal treatment should be used with caution to avoid catastrophic side effects.

9.
Environ Int ; 187: 108677, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677083

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPD-Q in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.


Asunto(s)
Fenilendiaminas , Goma , Animales , Fenilendiaminas/toxicidad , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Humanos , Monitoreo del Ambiente
10.
J Environ Sci Health B ; 59(6): 315-332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676363

RESUMEN

Heavy metals (HMs) are widely used in various industries. High concentrations of HMs can be severely toxic to plants, animals and humans. Microorganism-based bioremediation has shown significant potential in degrading and detoxifying specific HM contaminants. In this study, we cultivated a range of bacterial strains in liquid and solid nutrient medium containing different concentrations of different HMs to select and analyze bacteria capable of transforming HMs. The bacterial strains most resistant to selected HMs and exhibiting the ability to remove HMs from contaminated soils were identified. Then, the bacterial species capable of utilizing HMs in soil model experiments were selected, and their ability to transform HMs was evaluated. This study has also generated preliminary findings on the use of plants for further removal of HMs from soil after microbial bioremediation. Alcaligenes faecalis, Delftia tsuruhatensis and Stenotrophomonas sp. were selected for their ability to grow in and utilize HM ions at the maximum permissible concentration (MPC) and two times the MPC. Lysinibacillus fusiformis (local microflora) can be used as a universal biotransformation tool for many HM ions. Brevibacillus parabrevis has potential for the removal of lead ions, and Brevibacillus reuszeri and Bacillus safensis have potential for the removal of arsenic ions from the environment. The bacterial species have been selected for bioremediation to remove heavy metal ions from the environment.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Stenotrophomonas/metabolismo , Delftia/metabolismo , Alcaligenes faecalis/metabolismo
11.
Cell Mol Life Sci ; 81(1): 184, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630152

RESUMEN

Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.


Asunto(s)
Nanopartículas , Nanoestructuras , Autofagia
12.
Zebrafish ; 21(2): 206-213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621213

RESUMEN

The Ala Wai Canal is an artificial waterway in the tourist district of Waikiki in Honolulu, HI. Originally built to collect runoff from industrial, residential, and green spaces dedicated to recreation, the Ala Wai Canal has since experienced potent levels of toxicity due to this runoff entering the watershed and making it hazardous for both marine life and humans at current concentration, including Danio rerio (zebrafish). A community of learners at educations levels from high school to postbaccalaureate from Oahu, HI was connected through the Consortium for Increasing Research and Collaborative Learning Experiences (CIRCLE) distance research program. This team conducted research with an Investigator and team from Mayo Clinic in Rochester, MN, with the Ala Wai Canal as its primary subject. Through CIRCLE, research trainees sent two 32 oz bottles of Ala Wai- acquired water to a partnered laboratory at the Mayo Clinic in which zebrafish embryos were observed at differing concentrations of the sampled water against a variety of developmental and behavioral assays. Research trainees also created atlases of developmental outcomes in zebrafish following exposure to environmental toxins and tables of potential pesticide contaminants to enable the identification of the substances linked to structural defects and enhanced stress during Ala Wai water exposure experiments.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Humanos , Animales , Hawaii , Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Embrión no Mamífero/química
13.
Sci Total Environ ; 916: 170204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262535

RESUMEN

Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and ß-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis , Ecosistema , Acetaminofén , Monitoreo del Ambiente/métodos , Antibacterianos/análisis , Carbamazepina/análisis , Preparaciones Farmacéuticas
14.
Biol Trace Elem Res ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37821783

RESUMEN

The growth rate of reproductive system disorders caused by heavy metals is undeniable. The effect of time and interfering compounds are also of paramount importance. The main objective of this study was to compare the effects of broccoli extract and vitamin C in the context of cadmium poisoning on various reproductive parameters in mice, with a specific focus on the influence of time. A total of one hundred and forty-four male mice were randomly assigned to six groups. The control (C) group received only water and a standard diet without any interventions. The Cd group received a single intraperitoneal dose of cadmium chloride at 1.5 mg/kg. The cadmium intervention groups were administered broccoli extract at dosages of 100 mg/kg (Cd + B100), 200 mg/kg (Cd + B200), and 300 mg/kg (Cd + B300), respectively. Additionally, the Cd + VC group was treated with cadmium and vitamin C at 200 mg/kg intraperitoneally for a duration of 28 days. At the end of each week (four stages), five animals were randomly chosen from each group. Epididymal sperm were subjected to analysis for sperm parameters, while testicular tissue sections were examined for histological studies, apoptosis index, and markers of oxidative stress. The influence of time on body and testis weight gain was notably significant in the Cd + B300 and Cd + VC groups (p = 0.001). In all groups, except for Cd + B100, there were marked increases in spermatogenic cell lines and the Johnson coefficient compared to the Cd group (p = 0.001). These changes were particularly pronounced in the Cd + VC and Cd + B300 groups with respect to time (p < 0.001). Furthermore, there was a discernible positive impact of time on sperm count in the high-dose broccoli and vitamin C groups, although this effect did not reach significance in terms of sperm motility and vitality. Over time, the levels of superoxide dismutase (SOD) and catalase (CAT) enzymes increased, while malondialdehyde (MDA) levels decreased in the Cd + VC, Cd + B200, and Cd + B300 groups (p = 0.001). The apoptosis index in testicular tissue reached its highest level in the Cd group and its lowest level in the Cd + B300 and Cd + VC groups during the fourth week (p < 0.05). Linolenic acid, indole, and sulforaphane were identified as the most potent compounds in broccoli during this intervention. Consequently, vitamin C and broccoli extract at a dosage of 300 mg/kg demonstrated significant enhancements in reproductive performance in cases of cadmium poisoning. Overall, the influence of time significantly amplified the process of spermatogenesis and sperm production, with no observable changes in sperm viability and motility.

15.
Water Environ Res ; 95(9): e10920, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610032

RESUMEN

Triclosan, belonging to the bisphenols, is a known antiseptic broad-spectrum biocide. It has a very wide range of applications, both in health care and in the household. Triclosan enters the environment, both water bodies and soil, because of its high prevalence and the ability to accumulation. Excessive use of antimicrobial formulations may cause the generation of resistance among microorganisms. Reduced susceptibility to triclosan is observed more frequently and in an expanded group of microorganisms and is conditioned by a number of different mechanisms occurring on the molecular level. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Therefore, additional advanced treatment technologies are being considered in areas, where a triclosan contamination problem has been identified. Removal of triclosan from wastewater is carried out using different biological and chemical techniques; however, it should be pointed out that physico-chemical methods often generate toxic by-products. Toxicity of triclosan and its degradation products, bacterial resistance to this compound, and evident problems with triclosan elimination from wastewater are currently the main problems faced by companies creating products containing triclosan. PRACTITIONER POINTS: Triclosan is an emerging pollutant in the environment because of its ability to accumulation and high prevalence. Reduced susceptibility to triclosan is being observed more frequently. Conventional wastewater treatment processes are not always able to provide a reliable barrier to triclosan. Additional advanced treatment technologies should be implemented to remove triclosan from wastewater.


Asunto(s)
Contaminantes Ambientales , Triclosán , Triclosán/toxicidad , Aguas Residuales , Suelo
16.
Micromachines (Basel) ; 14(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37630022

RESUMEN

Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.

17.
Environ Sci Pollut Res Int ; 30(45): 101888-101895, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612556

RESUMEN

Fluoride (F-) contamination in drinking water is a major global concern. According to several studies, India and China are the most affected by the presence of excess F-. Long-time exposure to F- concentrations above 1.5 ppm can lead to hard and soft tissue fluorosis (F- toxicity). There are no effective cure or treatment for fluorosis and the condition is almost irreversible. Considering water to be the prime media through which F- reaches humans, maintaining optimal F- levels in water remains the only possible remedy. F- endemic areas have adapted several conventional defluoridation techniques to resolve the issue. Among these, adsorption with plant compounds is widely used for F- removal. Studies have shown that plant metabolites can ameliorate the toxic effects of F-. Based on this, we attempt to elucidate the potential binding and electrochemical bio-sensing properties of selected phytochemicals towards F-. The focus of the present work is to evaluate the interactions of phytochemicals with F-; for which, the binding studies of phytochemicals with F- have been elaborated by UV-visible spectroscopy and emission techniques. Benesi-Hildebrand's (BH) plot was used to calculate the binding constant (CUR - 34.9 × 103 (M-1), QUER - 13 × 103 (M-1), ESC -6.3 × 103 (M-1), FIS - 5.36 × 103 (M-1) and PCA -1.5 × 103 (M-1), and detection limit (CUR - 1.54 × 10-7 M, QUER - 0.156 × 10-6 M, ESC - 0.221 × 10-6 M, FIS - 0.175 × 10-6 M, and PCA - 5.8 × 10-6 M) for the F-:phytochemical mixtures. Further, the binding characteristics were confirmed using 1H-NMR titration experiments. Our findings highlight the potential of phytochemicals as effective binding agents for F-, thereby reducing its bioavailability.

18.
Chemosphere ; 337: 139441, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37422218

RESUMEN

In present work, a novel catalyst of cobalt supported on silica-composited biochar (Co@ACFA-BC) derived from fly ash and agricultural waste was synthesized. A series of characterizations confirmed that Co3O4 and Al/Si-O compounds were successfully embedded on the surface of biochar, which triggered superior catalytic activity for PMS activation towards phenol degradation. Particularly, the Co@ACFA-BC/PMS system could completely degrade phenol in the wide pH range, and was almost unaffected by environmental factors including humic acid (HA), H2PO4-, HCO3-, Cl-, and NO3-. Further quenching experiment and EPR analysis proved that both radical (SO4·-, ·OH, O2·-) and non-radical (1O2) pathways were involved in the catalytic reaction system, and the excellent PMS activation was attributed to the electron pair cycling of Co2+/Co3+ and the active sites provided by Si-O-O and Si/Al-O bonds on the catalyst surface. Meanwhile, the carbon shell effectively inhibited the leaching of metal ions, enabling the Co@ACFA-BC catalyst to maintain excellent catalytic activity after four cycles. Finally, biological acute toxicity assay demonstrated that the toxicity of phenol could be significantly reduced after being treated by Co@ACFA-BC/PMS. Overall, this work provides a promising strategy for solid waste valorization and a feasible methodology for green and efficient treatment of refractory organic pollutants in water environment.


Asunto(s)
Contaminantes Ambientales , Peróxidos , Peróxidos/química , Dióxido de Silicio , Fenoles , Oxidación-Reducción
19.
Biology (Basel) ; 12(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37372052

RESUMEN

In this historical context, the Mediterranean Sea faces an increasing threat from emerging pollutants such as pharmaceuticals, personal care products, heavy metals, pesticides and microplastics, which pose a serious risk to the environment and human health. In this regard, aquatic invertebrates and fish are particularly vulnerable to the toxic effects of these pollutants, and several species have been identified as bio-indicators for their detection. Among these, bivalve molluscs and elasmobranchs are now widely used as bio-indicators to accurately assess the effects of contaminants. The study focuses on the catshark Scyliorhinus canicular and on the Mediterranean mussel Mytilus galloprovincialis. The first one is a useful indicator of localised contamination levels due to its exposure to pollutants that accumulate on the seabed. Moreover, it has a high trophic position and plays an important role in the Mediterranean Sea ecosystem. The bivalve mollusc Mytilus galloprovincialis, on the other hand, being a filter-feeding organism, can acquire and bioaccumulate foreign particles present in its environment. Additionally, because it is also a species of commercial interest, it has a direct impact on human health. In conclusion, the increasing presence of emerging pollutants in the Mediterranean Sea is a serious issue that requires immediate attention. Bivalve molluscs and elasmobranchs are two examples of bio-indicators that must be used to precisely determine the effects of these pollutants on the marine ecosystem and human health.

20.
Toxics ; 11(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235223

RESUMEN

Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, ß-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA