Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Adv Sci (Weinh) ; : e2406473, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995235

RESUMEN

Candidiasis, which presents a substantial risk to human well-being, is frequently treated with azoles. However, drug-drug interactions caused by azoles inhibiting the human CYP3A4 enzyme, together with increasing resistance of Candida species to azoles, represent serious issues with this class of drug, making it imperative to develop innovative antifungal drugs to tackle this growing clinical challenge. A drug repurposing approach is used to examine a library of Food and Drug Administration (FDA)-approved drugs, ultimately identifying otilonium bromide (OTB) as an exceptionally encouraging antifungal agent. Mechanistically, OTB impairs vesicle-mediated trafficking by targeting Sec31, thereby impeding the plasma membrane (PM) localization of the ergosterol transporters, such as Sip3. Consequently, OTB obstructs the movement of ergosterol across membranes and triggers cytotoxic autophagy. It is noteworthy that C. albicans encounters challenges in developing resistance to OTB because it is not a substrate for drug transporters. This study opens a new door for antifungal therapy, wherein OTB disrupts ergosterol subcellular distribution and induces cytotoxic autophagy. Additionally, it circumvents the hepatotoxicity associated with azole-mediated liver enzyme inhibition and avoids export-mediated drug resistance in C. albicans.

2.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979343

RESUMEN

Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.

3.
mBio ; : e0166124, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980037

RESUMEN

Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE: The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.

4.
BMC Microbiol ; 24(1): 196, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849761

RESUMEN

Biofilms produced by Candida albicans present a challenge in treatment with antifungal drug. Enhancing the sensitivity to fluconazole (FLC) is a reasonable method for treating FLC-resistant species. Moreover, several lines of evidence have demonstrated that berberine (BBR) can have antimicrobial effects. The aim of this study was to clarify the underlying mechanism of these effects. We conducted a comparative study of the inhibition of FLC-resistant strain growth by FLC treatment alone, BBR treatment alone, and the synergistic effect of combined FLC and BBR treatment. Twenty-four isolated strains showed distinct biofilm formation capabilities. The antifungal effect of combined FLC and BBR treatment in terms of the growth and biofilm formation of Candida albicans species was determined via checkerboard, time-kill, and fluorescence microscopy assays. The synergistic effect of BBR and FLC downregulated the expression of the efflux pump genes CDR1 and MDR, the hyphal gene HWP1, and the adhesion gene ALS3; however, the gene expression of the transcriptional repressor TUP1 was upregulated following treatment with this drug combination. Furthermore, the addition of BBR led to a marked reduction in cell surface hydrophobicity. To identify resistance-related genes and virulence factors through genome-wide sequencing analysis, we investigated the inhibition of related resistance gene expression by the combination of BBR and FLC, as well as the associated signaling pathways and metabolic pathways. The KEGG metabolic map showed that the metabolic genes in this strain are mainly involved in amino acid and carbon metabolism. The metabolic pathway map showed that several ergosterol (ERG) genes were involved in the synthesis of cell membrane sterols, which may be related to drug resistance. In this study, BBR + FLC combination treatment upregulated the expression of the ERG1, ERG3, ERG4, ERG5, ERG24, and ERG25 genes and downregulated the expression of the ERG6 and ERG9 genes compared with fluconazole treatment alone (p < 0.05).


Asunto(s)
Antifúngicos , Berberina , Biopelículas , Candida albicans , Biología Computacional , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , Berberina/farmacología , Fluconazol/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Biología Computacional/métodos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sinergismo Farmacológico , Regulación Fúngica de la Expresión Génica/efectos de los fármacos
5.
Foods ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928802

RESUMEN

In this work, steam explosion (SE) was applied to prompt the rapid extraction of ergosterol and polysaccharides from Flammulina velutipes root (FVR) waste. Ultrasound-assisted saponification extraction (UASE) followed by water extraction was used to prepare ergosterol and polysaccharides. The results indicated that SE destroyed the complicated structure of FVR and increased its internal porosity and surface roughness. SE caused the thermal degradation of FVR's structural components and increased the polysaccharide content 0.97-fold. As a result, the extraction yield and efficiency of ergosterol and polysaccharides were improved. The theoretical maximum extraction concentration (C∞) and diffusion coefficient (D) were increased by 34.10% and 78.04% (ergosterol) and 27.69% and 48.67% (polysaccharides), respectively. The extraction yields obtained within 20-30 min of extraction time exceeded those of untreated samples extracted after several hours. For polysaccharides, SE led to a significant reduction in the average molecular weight, increased the percentage of uronic acids and decreased the neutral sugar percentage. The monosaccharide composition was changed by SE, with an increase in the molar ratio of glucose of 64.06% and some reductions in those of other monosaccharides. This work provides an effective method for the processing of fungi waste and adds to its economic value, supporting its high-value utilization in healthcare products.

6.
J Steroid Biochem Mol Biol ; 243: 106572, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908720

RESUMEN

Aberrant cholesterol homeostasis is a well-recognized hallmark of cancer and is implicated in metastasis as well as chemotherapeutic resistance, the two major causes of cancer associated mortality. Liver X receptors (LXRs) are the key transcription factors that induce cholesterol efflux via enhancing the expression of ABCA1 and ABCG1. Therefore, a comprehensive analysis of several novel sterols namely ergosta-7,22,24(28)-trien-3ß-ol (Erg1), ergosta-5,22,25-trien-3-ol (Erg2), ergosta-5,7,22,24(28)-tetraen-3ß-ol (Erg3), and ergosta-7,22-dien-3ß-ol (Erg4) as LXR agonists has been performed. Molecular docking studies have shown that these sterols possess higher binding affinities for LXRs as compared to the reference ligands (GW3965 and TO901317) and also formed critical activating interactions. Molecular dynamic (MD) simulations further confirmed that docking complexes made of these sterols possess significant stability. To assess the extent of LXR activation, ABCA1 promoter was cloned into luciferase reporter plasmid and transfected into HCT116 cells. It was observed that treatment with Erg, Erg2 and Erg4 led to a significant LXR activation with an EC50 of 5.64 µM, 4.83 and 3.03 µM respectively. Furthermore, a significant increase in mRNA expression of NR1H2 and LXR target genes i.e. ABCA1, ABCG1 and ApoE was observed upon Erg treatment. Flow cytometric analysis have revealed a significant increase in the accumulation of ABCA1 upon Erg treatment. Cytotoxicity studies conducted on colorectal cancer cell and normal epithelial cell line showed that these sterols are selectively toxic towards cancer cells. Taken together, our findings suggests that ergosterol activates LXRs, have significant anticancer activity and could be a likely candidate to manage aberrant cholesterol homeostasis.

7.
Mol Pharm ; 21(7): 3643-3660, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885973

RESUMEN

Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.


Asunto(s)
Colesterol , Cobalto , Ergosterol , Membrana Dobles de Lípidos , Liposomas , Ergosterol/química , Cobalto/química , Liposomas/química , Colesterol/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica
8.
Arch Microbiol ; 206(7): 305, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878211

RESUMEN

Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mutación
9.
Foods ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38890965

RESUMEN

This study aims to focus on developing a food supplement for the geriatric population using disposal mushrooms, oats, and lactose-free milk powder. Lactose intolerance is most common in older adults, raising the demand for lactose-free foods. One of the major global challenges currently faced by humankind is food waste (FW). Most of the food that is produced for human consumption has not been utilized completely (1/3rd-1/2 unutilized), resulting in agricultural food waste. Mushrooms are highly valuable in terms of their nutritional value and medicinal properties; however, a significant percentage of mushroom leftovers are produced during mushroom production that do not meet retailers' standards (deformation of caps/stalks) and are left unattended. Oats are rich in dietary fibre beta-glucan (55% water soluble; 45% water insoluble). Lactose-free milk powder, oats, and dried mushroom leftover powder were blended in different ratios. It was observed that increasing the amount of mushroom leftover powder increases the protein content while diluting calories. The product with 15% mushroom powder and 30% oat powder showed the highest sensory scores and the lowest microbial count. The GCMS and FTIR analyses confirmed the presence of ergosterol and other functional groups. The results of the XRD analysis showed that the product with 15% mushroom powder and 30% oat powder had a less crystalline structure than the product with 5% mushroom powder and 40% oat powder and the product with 10% mushroom powder and 35% oat powder, resulting in more solubility. The ICP-OES analysis showed significant concentrations of calcium, potassium, magnesium, sodium, and zinc. The coliform count was nil for the products, and the bacterial count was below the limited range (3 × 102 cfu/g). The product with 15% mushroom powder and 30% oat powder showed the best results, so this developed product is recommended for older adults.

10.
Curr Health Sci J ; 50(1): 87-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846468

RESUMEN

Owing to ergosterol content, after UV irradiation yeast become a well-known source of ergocalciferol (vitamin D2). Additionally, pharmaceutical yeast-based supplements may represent a suitable option for treating hypovitaminosis, especially in patients adhering to a vegan diet. Using the high-performance liquid chromatography-ultraviolet (HPLC-UV) methodology our study sought to analyse three commercially available yeast-based vitamin D2 supplements while comparing the effect of UV-C irradiation (254 nm) on yeast biomass derived from the brewing process and pure ergosterol. The two compounds were precisely separated under the described conditions in an efficient and quick manner with a retention time (Rt) of 4.152 ± 0.018 minutes for vitamin D2 and 5.097 ± 0.013 minutes for ergosterol. However, when approaching the quantitative analysis, based on our findings, it appears that the pharmaceutical supplements deviate from the declared amount of substance indicated on the label. 15 minutes of UV-C irradiation generates vitamin D2 in yeast biomass with a conversion rate of 1.78%. Also, high content of ergosterol, beside vitamin D2 formation after irradiation, may trigger the appearance of secondary products such as tachysterol.

11.
Appl Environ Microbiol ; : e0087424, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940563

RESUMEN

Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE: The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.

12.
Int J Biol Macromol ; 269(Pt 1): 132034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702006

RESUMEN

Parthenium hysterophorus plant has a diverse chemical profile and immense bioactive potential. It exhibits excellent pharmacological properties such as anti-cancer, anti-inflammatory, anti-malarial, microbicidal, and anti-trypanosomal. The present study aims to evaluate the anti-leishmanial potential and toxicological safety of anhydroparthenin isolated from P. hysterophorus. Anydroparthenin was extracted from the leaves of P. hysterophorus and characterized through detailed analysis of 1H, 13C NMR, and HRMS. Dye-based in vitro and ex vivo assays confirmed that anhydroparthenin significantly inhibited both promastigote and amastigote forms of the Leishmania donovani parasites. Both the cytotoxicity experiment and hemolytic assay revealed its non-toxic nature and safety index in the range of 10 to 15. Further, various mechanistic assays suggested that anhydroparthenin led to the generation of oxidative stress, intracellular ATP depletion, alterations in morphology and mitochondrial membrane potential, formation of intracellular lipid bodies, and acidic vesicles, ultimately leading to parasite death. As a dual targeting approach, computational studies and sterol quantification assays confirmed that anhydroparthenin inhibits the Sterol C-24 methyl transferase and Sterol 14-α demethylase proteins involved in the ergosterol biosynthesis in Leishmania parasites. These results suggest that anhydroparthenin could be a promising anti-leishmanial molecule and can be developed as a novel therapeutic stratagem against leishmaniasis.


Asunto(s)
Leishmania donovani , Metiltransferasas , Esterol 14-Desmetilasa , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Antiprotozoarios/química , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación por Computador , Animales , Humanos
13.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727840

RESUMEN

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Membrana Celular , Isotiocianatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Ciclo Celular/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38763476

RESUMEN

The origin of vitamin D2 in herbivorous animals was investigated in vivo in sheep and in bovine as well as mouse gastrointestinal tracts. A high concentration of 25-hydroxyvitamin D2 in blood plasma of sheep both in summer and winter appeared to be incompatible with the undetectable level of vitamin D2 in the pasture on which the sheep were grazing. Studies with bovine rumen contents from a cow grazing the same pasture as the sheep, demonstrated an increased concentration of vitamin D2 on anaerobic incubation in a 'Rusitec' artificial rumen, which was further enhanced when cellulose powder was added as a fermentation substrate. The colon contents of mice that were fed from weaning on a vitamin D-free diet were found to contain vitamin D2. The results of these comparative studies in 3 animal species indicated that vitamin D2 was being generated by microbial anaerobic metabolism in the gastrointestinal tract.


Asunto(s)
Ergocalciferoles , Rumen , Animales , Bovinos , Ovinos/microbiología , Ratones , Rumen/microbiología , Rumen/metabolismo , Ergocalciferoles/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Fermentación
15.
Heliyon ; 10(9): e29954, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694117

RESUMEN

The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 µL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 µL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 µL/mL, and FB1 and FB2 production at 0.8 and 0.6 µL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 µL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 µL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 µM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.

16.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724834

RESUMEN

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Quitosano , Pruebas de Sensibilidad Microbiana , Nanopartículas , Ácido Fítico , Quitosano/química , Biopelículas/efectos de los fármacos , Nanopartículas/química , Antifúngicos/farmacología , Antifúngicos/administración & dosificación , Animales , Candida albicans/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Ácido Fítico/farmacología , Ácido Fítico/administración & dosificación , Ácido Fítico/química , Femenino , Candidiasis/tratamiento farmacológico , Tamaño de la Partícula , Portadores de Fármacos/química , Reactivos de Enlaces Cruzados/química , Citocinas/metabolismo
17.
Food Res Int ; 186: 114374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729731

RESUMEN

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Asunto(s)
Ácido Clorogénico , Emulsionantes , Emulsiones , Ergosterol , Tamaño de la Partícula , Agua , Ergosterol/química , Emulsiones/química , Emulsionantes/química , Agua/química , Ácido Clorogénico/química , Viscosidad , Antioxidantes/química , Aceites/química , Concentración de Iones de Hidrógeno
18.
J Fungi (Basel) ; 10(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786702

RESUMEN

BACKGROUND: The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. METHODS: The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. RESULTS: We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. CONCLUSION: This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance.

19.
J Fungi (Basel) ; 10(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786715

RESUMEN

Green mold, caused by Penicillium digitatum, is the major cause of citrus postharvest decay. Currently, the application of sterol demethylation inhibitor (DMI) fungicide is one of the main control measures to prevent green mold. However, the fungicide-resistance problem in the pathogen P. digitatum is growing. The regulatory mechanism of DMI fungicide resistance in P. digitatum is poorly understood. Here, we first performed transcriptomic analysis of the P. digitatum strain Pdw03 treated with imazalil (IMZ) for 2 and 12 h. A total of 1338 genes were up-regulated and 1635 were down-regulated under IMZ treatment for 2 h compared to control while 1700 were up-regulated and 1661 down-regulated under IMZ treatment for 12 h. The expression of about half of the genes in the ergosterol biosynthesis pathway was affected during IMZ stress. Further analysis identified that 84 of 320 transcription factors (TFs) were differentially expressed at both conditions, making them potential regulators in DMI resistance. To confirm their roles, three differentially expressed TFs were selected to generate disruption mutants using the CRISPR/Cas9 technology. The results showed that two of them had no response to IMZ stress while ∆PdflbC was more sensitive compared with the wild type. However, disruption of PdflbC did not affect the ergosterol content. The defect in IMZ sensitivity of ∆PdflbC was restored by genetic complementation of the mutant with a functional copy of PdflbC. Taken together, our results offer a rich source of information to identify novel regulators in DMI resistance.

20.
Food Chem ; 452: 139566, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728892

RESUMEN

Red pepper powder (RPP) made from ground dried red pepper (Capsicum annuum L.) is prone to adulteration with fungal-spoiled RPP to gain unfair profits in Korea. This study aimed to investigate the effects of fungal infection on the ergosterol and phytosterol content of RPP and evaluate the potential of the sterol content as a marker for identifying fungal-spoiled RPP. Ergosterol was detected only in fungal-spoiled RPP and not in unspoiled RPP [

Asunto(s)
Capsicum , Contaminación de Alimentos , Hongos , Esteroles , Capsicum/microbiología , Capsicum/química , Contaminación de Alimentos/análisis , Hongos/metabolismo , Hongos/aislamiento & purificación , Esteroles/análisis , Polvos/química , Biomarcadores/análisis , Fitosteroles/análisis , Ergosterol/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...