Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 331: 138753, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100246

RESUMEN

Since the coronavirus disease 2019 (COVID-19) pandemic epidemic, the excessive usage of chlorinated disinfectants raised the substantial risks of disinfection by-products (DBPs) exposure. While several technologies may remove the typical carcinogenic DBPs, trichloroacetic acid (TCAA), their application for continuous treatment is limited due to their complexity and expensive or hazardous inputs. In this study, degradation and dechlorination of TCAA induced by an in situ 222 nm KrCl* excimer radiation as well as role of oxygen in the reaction pathway were investigated. Quantum chemical calculation methods were used to help predict the reaction mechanism. Experimental results showed that UV irradiance increased with increasing input power and decreased when the input power exceeded 60 W. Decomposition and dechlorination were simultaneously achieved, where around 78% of TCAA (0.62 mM) can be eliminated and 78% dechlorination within 200 min. Dissolved oxygen showed little effect on the TCAA degradation but greatly boosted the dechlorination as it can additionally generate hydroxyl radical (•OH) in the reaction process. Computational results showed that under 222 nm irradiation, TCAA was excited from S0 to S1 state and then decayed by internal crossing process to T1 state, and a reaction without potential energy barrier followed, resulting in the breaking of C-Cl bond and finally returning to S0 state. Subsequent C-Cl bond cleavage occurred by a barrierless •OH insertion and HCl elimination (27.9 kcal/mol). Finally, the •OH attacked (14.6 kcal/mol) the intermediate byproducts, leading to complete dechlorination and decomposition. The KrCl* excimer radiation has obvious advantages in terms of energy efficiency compared to other competitive methods. These results provide insight into the mechanisms of TCAA dechlorination and decomposition under KrCl* excimer radiation, as well as important information for guiding research toward direct and indirect photolysis of halogenated DBPs.


Asunto(s)
COVID-19 , Desinfectantes , Humanos , Ácido Tricloroacético , Desinfección , Halogenación
2.
J Hazard Mater ; 452: 131292, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989776

RESUMEN

Microbial safety in water has always been the focus of attention, especially during the COVID-19 pandemic. Development of green, efficient and safe disinfection technology is the key to control the spread of pathogenic microorganisms. Here, an in situ aquatic electrode KrCl excimer radiation with main emission wavelength 222 nm (UV222) was designed and used to disinfect model waterborne virus and bacteria, i.e. phage MS2, E. coli and S. aureus. High inactivation efficacy and diversity of inactivation mechanisms of UV222 were proved by comparision with those of commercial UV254. UV222 could totally inactivate MS2, E. coli and S. aureus with initial concentrations of ∼107 PFU or CFU mL-1 within 20, 15, and 36 mJ/cm2, respectively. The UV dose required by UV254 to inactivate the same logarithmic pathogenic microorganism is at least twice that of UV222. The protein, genomic and cell membrane irreparable damage contributed to the microbial inactivation by UV222, but UV254 only act on nucleic acid of the target microorganisms. We found that UV222 damage nucleic acid with almost the same or even higher efficacy with UV254. In addition, free base damage of UV222 in similar ways with UV254(dimer and hydrate). But due to the quantum yield of free base degradation of UV222 was greater than UV254, the photolysis rates of UV222 to A, G, C and U four bases were 11.5, 1.2, 3.2 and 1 times as those of UV254, respectively. Excellent disinfection performance in UV222 irradiation was also achieved in real water matrices (WWTP and Lake). In addition, it was proved that coexisting HCO3- or HPO42 - in real and synthetic water matrices can produce • OH to promote UV222 disinfection. This study provided novel insight into the UV222 disinfection process and demonstrated its possibility to take place of the conventional ultraviolet mercury lamp in water purification.


Asunto(s)
COVID-19 , Purificación del Agua , Humanos , Rayos Ultravioleta , Escherichia coli/efectos de la radiación , Staphylococcus aureus , Pandemias , Desinfección , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA