Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39314405

RESUMEN

Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.

2.
Pharmacol Biochem Behav ; 243: 173840, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096973

RESUMEN

Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD. Evidence implicates the endogenous dynorphin (DYN)/κ-opioid receptor (KOR) system recruitment in dysphoric and negative emotional states in AUD to promote maladaptive behavioral regulation. The nucleus accumbens shell (AcbSh), mediating motivational and emotional processes that is a component of the mesolimbic dopamine system and the extended amygdala, is an important site related to alcohol's reinforcing actions (both positive and negative) and neuroadaptations in the AcbSh DYN/KOR system have been documented to induce maladaptive symptoms in AUD. We have previously shown that in other nodes of the extended amygdala, site-specific KOR antagonism can distinguish different symptoms of alcohol dependence and withdrawal. In the current study, we examined the role of the KOR signaling in the AcbSh of male Wistar rats in operant alcohol self-administration, measures of negative affective-like behavior, and physiological symptoms during acute alcohol withdrawal in alcohol-dependence. To induce alcohol dependence, rats were exposed to chronic intermittent ethanol vapor for 14 h/day for three months, during which stable escalation of alcohol self-administration was achieved and pharmacological AcbSh KOR antagonism ensued. The results showed that AcbSh KOR antagonism significantly reduced escalated alcohol intake and negative affective-like states but did not alter somatic symptoms of withdrawal. Understanding the relative contribution of these different drivers is important to understand and inform therapeutic efficacy approaches in alcohol dependence and further emphasis the importance of the KOR/DYN system as a target for AUD therapeutics.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Núcleo Accumbens , Receptores Opioides kappa , Síndrome de Abstinencia a Sustancias , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Masculino , Alcoholismo/tratamiento farmacológico , Alcoholismo/psicología , Alcoholismo/metabolismo , Ratas , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/psicología , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/psicología , Etanol/administración & dosificación , Etanol/farmacología , Autoadministración , Antagonistas de Narcóticos/farmacología , Pirrolidinas/farmacología , Pirrolidinas/administración & dosificación , Conducta Animal/efectos de los fármacos
3.
CNS Neurosci Ther ; 30(8): e70001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39154359

RESUMEN

AIMS: The parabrachial nucleus (PBN) promotes wakefulness states under general anesthesia. Recent studies have shown that glutamatergic neurons within the PBN play a crucial role in facilitating emergence from anesthesia. Our previous study indicates that vesicular glutamate transporter 2 (vglut2) expression neurons of the PBN extend into the extended amygdala (EA). However, the modulation of PBNvglut2-EA in general anesthesia remains poorly understood. This study aims to investigate the role of PBNvglut2-EA in alterations of consciousness during sevoflurane anesthesia. METHODS: We first validated vglut2-expressing neuron projections from the PBN to the EA using anterograde tracing. Then, we conducted immunofluorescence staining of c-Fos to investigate the role of the EA involved in the regulation of consciousness during sevoflurane anesthesia. After, we performed calcium fiber photometry recordings to determine the changes in PBNvglut2-EA activity. Lastly, we modulated PBNvglut2-EA activity under sevoflurane anesthesia using optogenetics, and electroencephalogram (EEG) was recorded during specific optogenetic modulation. RESULTS: The expression of vglut2 in PBN neurons projected to the EA, and c-Fos expression in the EA was significantly reduced during sevoflurane anesthesia. Fiber photometry revealed that activity in the PBNvglut2-EA pathway was suppressed during anesthesia induction but restored upon awakening. Optogenetic activation of the PBNvglut2-EA delayed the induction of anesthesia. Meanwhile, EEG recordings showed significantly decreased δ oscillations and increased ß and γ oscillations compared to the EYFP group. Furthermore, optogenetic activation of the PBNvglut2-EA resulted in an acceleration of awakening from anesthesia, accompanied by decreased δ oscillations on EEG recordings. Optogenetic inhibition of PBNvglut2-EA accelerated anesthesia induction. Surprisingly, we found a sex-specific regulation of PBNvglut2-EA in this study. The activity of PBNvglut2-EA was lower in males during the induction of anesthesia and decreased more rapidly during sevoflurane anesthesia compared to females. Photoactivation of the PBNvglut2-EA reduced the sensitivity of males to sevoflurane, showing more pronounced wakefulness behavior and EEG changes than females. CONCLUSIONS: PBNvglut2-EA is involved in the promotion of wakefulness under sevoflurane anesthesia. Furthermore, PBNvglut2-EA shows sex differences in the changes of consciousness induced by sevoflurane anesthesia.


Asunto(s)
Amígdala del Cerebelo , Anestésicos por Inhalación , Ratones Endogámicos C57BL , Neuronas , Núcleos Parabraquiales , Sevoflurano , Proteína 2 de Transporte Vesicular de Glutamato , Vigilia , Sevoflurano/farmacología , Animales , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ratones , Anestésicos por Inhalación/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Optogenética/métodos , Electroencefalografía
4.
bioRxiv ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39026814

RESUMEN

Temporal dynamics play a central role in models of emotion: "fear" is widely conceptualized as a phasic response to certain-and-imminent danger, whereas "anxiety" is a sustained response to uncertain-or-distal harm. Yet the underlying human neurobiology remains contentious. Leveraging an ethnoracially diverse sample, translationally relevant paradigm, and theory-driven modeling approach, we demonstrate that certain and uncertain threat recruit a shared threat-anticipation circuit. This cortico-subcortical circuit exhibits persistently elevated activation when anticipating uncertain-threat encounters and a transient burst of activation in the moments before certain encounters. For many scientists and clinicians, feelings are the defining feature of human fear and anxiety. Here we used an independently validated brain signature to covertly decode the momentary dynamics of anticipatory distress for the first time. Results mirrored the dynamics of neural activation. These observations provide fresh insights into the neurobiology of threat-elicited emotions and set the stage for more ambitious clinical and mechanistic research.

5.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39009438

RESUMEN

Neuroticism/negative emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and well-being. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment to psychiatric illness. Animal research suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to humans has remained unclear. Here we used a novel combination of psychometric, psychophysiological, and neuroimaging approaches to test this hypothesis in an ethnoracially diverse, sex-balanced sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is preferentially associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat (aversive multimodal stimulation), whereas N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to threat-related faces. It is often assumed that different threat paradigms are interchangeable assays of individual differences in brain function, yet this has rarely been tested. Our results revealed negligible associations between BST/Ce reactivity to the anticipation of threat and the presentation of threat-related faces, indicating that the two tasks are nonfungible. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for refining mechanistic research.


Asunto(s)
Amígdala del Cerebelo , Emociones , Imagen por Resonancia Magnética , Neuroticismo , Núcleos Septales , Núcleos Septales/fisiología , Núcleos Septales/diagnóstico por imagen , Humanos , Masculino , Femenino , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Adulto Joven , Neuroticismo/fisiología , Adulto , Emociones/fisiología , Incertidumbre , Miedo/fisiología , Miedo/psicología , Adolescente
6.
Neurobiol Stress ; 31: 100638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38737421

RESUMEN

Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 h/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.

7.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659781

RESUMEN

Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 hr/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.

8.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460131

RESUMEN

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Septales , Animales , Proteína Quinasa C-delta/metabolismo , Anorexia/metabolismo , Neuronas/metabolismo , Núcleo Amigdalino Central/metabolismo , Vías Nerviosas/fisiología , Núcleos Septales/fisiología
9.
Alcohol ; 116: 53-64, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38423261

RESUMEN

The central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) are reciprocally connected nodes of the extended amygdala thought to play an important role in alcohol consumption. Studies of immediate-early genes indicate that BNST and CeA are acutely activated following alcohol drinking and may signal alcohol reward in nondependent drinkers, while stress signaling in the extended amygdala following chronic alcohol exposure drives increased drinking via negative reinforcement. However, the temporal dynamics of neuronal activation in these regions during drinking behavior are poorly understood. In this study, we used fiber photometry and the genetically encoded calcium sensor GCaMP6s to assess acute changes in neuronal activity during alcohol consumption in BNST and CeA before and after a chronic drinking paradigm. Activity was examined in the pan-neuronal population and separately in dynorphinergic neurons. BNST and CeA showed increased pan-neuronal activity during acute consumption of alcohol and other fluid tastants of positive and negative valence, as well as highly palatable chow. Responses were greatest during initial consummatory bouts and decreased in amplitude with repeated consumption of the same tastant, suggesting modulation by stimulus novelty. Dynorphin neurons showed similar consumption-associated calcium increases in both regions. Following three weeks of continuous alcohol access (CA), calcium increases in dynorphin neurons during drinking were maintained, but pan-neuronal activity and BNST-CeA coherence were altered in a sex-specific manner. These results indicate that BNST and CeA, and dynorphin neurons specifically, are engaged during drinking behavior, and activity dynamics are influenced by stimulus novelty and chronic alcohol.


Asunto(s)
Calcio , Dinorfinas , Femenino , Masculino , Humanos , Etanol/farmacología , Amígdala del Cerebelo , Consumo de Bebidas Alcohólicas , Agitación Psicomotora
10.
Horm Behav ; 160: 105487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281444

RESUMEN

Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.


Asunto(s)
Oxitocina , Peromyscus , Masculino , Femenino , Animales , Oxitocina/farmacología , Oxitocina/fisiología , Peromyscus/fisiología , Conducta Social , Agresión/fisiología , Receptores de Oxitocina , Roedores
11.
Artículo en Inglés | MEDLINE | ID: mdl-37858736

RESUMEN

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Asunto(s)
Dopamina , Síndrome de Wolfram , Animales , Femenino , Masculino , Reacción de Prevención , Neuronas/fisiología , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
12.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798350

RESUMEN

Neuroticism/Negative Emotionality (N/NE)-the tendency to experience anxiety, fear, and other negative emotions-is a fundamental dimension of temperament with profound consequences for health, wealth, and wellbeing. Elevated N/NE is associated with a panoply of adverse outcomes, from reduced socioeconomic attainment and divorce to mental illness and premature death. Work in animals suggests that N/NE reflects heightened reactivity to uncertain threat in the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce), but the relevance of these discoveries to the human brain and temperament have remained unclear. Here we used a combination of psychometric, psychophysiological, and neuroimaging approaches to rigorously test this hypothesis in an ethnoracially diverse sample of 220 emerging adults selectively recruited to encompass a broad spectrum of N/NE. Cross-validated robust-regression analyses demonstrated that N/NE is selectively associated with heightened BST activation during the uncertain anticipation of a genuinely distressing threat. In contrast, N/NE was unrelated to BST activation during certain-threat anticipation, Ce activation during either type of threat anticipation, or BST/Ce reactivity to 'threat-related' faces. Implicit in much of the neuroimaging literature is the assumption that different threat paradigms are statistically interchangeable probes of individual differences in neural function, yet our results revealed negligible evidence of convergence between popular threat-anticipation and emotional-face tasks. These observations provide a framework for conceptualizing emotional traits and disorders; for guiding the design and interpretation of biobank and other neuroimaging studies of psychiatric risk, disease, and treatment; and for informing the next generation of mechanistic research.

13.
Front Pharmacol ; 14: 1253736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044942

RESUMEN

Opioid use disorder is characterized by excessive use of opioids, inability to control its use, a withdrawal syndrome upon discontinuation of opioids, and long-term likelihood of relapse. The behavioral stages of opioid addiction correspond with affective experiences that characterize the opponent process view of motivation. In this framework, active involvement is accompanied by positive affective experiences which gives rise to "reward craving," whereas the opponent process, abstinence, is associated with the negative affective experiences that produce "relief craving." Relief craving develops along with a hypersensitization to the negatively reinforcing aspects of withdrawal during abstinence from opioids. These negative affective experiences are hypothesized to stem from neuroadaptations to a network of affective processing called the "extended amygdala." This negative valence network includes the three core structures of the central nucleus of the amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (NAc shell), in addition to major inputs from the basolateral amygdala (BLA). To better understand the major components of this system, we have reviewed their functions, inputs and outputs, along with the associated neural plasticity in animal models of opioid withdrawal. These models demonstrate the somatic, motivational, affective, and learning related models of opioid withdrawal and abstinence. Neuroadaptations in these stress and motivational systems are accompanied by negative affective and aversive experiences that commonly give rise to relapse. CeA neuroplasticity accounts for many of the aversive and fear-related effects of opioid withdrawal via glutamatergic plasticity and changes to corticotrophin-releasing factor (CRF)-containing neurons. Neuroadaptations in BNST pre-and post-synaptic GABA-containing neurons, as well as their noradrenergic modulation, may be responsible for a variety of aversive affective experiences and maladaptive behaviors. Opioid withdrawal yields a hypodopaminergic and amotivational state and results in neuroadaptive increases in excitability of the NAc shell, both of which are associated with increased vulnerability to relapse. Finally, BLA transmission to hippocampal and cortical regions impacts the perception of conditioned aversive effects of opioid withdrawal by higher executive systems. The prevention or reversal of these varied neuroadaptations in the extended amygdala during opioid withdrawal could lead to promising new interventions for this life-threatening condition.

14.
Proc Natl Acad Sci U S A ; 120(43): e2306475120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37847733

RESUMEN

Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.


Asunto(s)
Núcleos Septales , Diferenciación Sexual , Adulto , Humanos , Masculino , Femenino , Andrógenos/farmacología , Hormonas Gonadales/farmacología , Hormonas Gonadales/fisiología , Pubertad
15.
Pharmacol Biochem Behav ; 230: 173605, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499765

RESUMEN

BACKGROUND: Anxiety disorders are the most prevalent psychiatric disorders, and they are highly comorbid with chronic pain conditions. The central nucleus of the amygdala (CeA) is known not only for its role in the regulation of anxiety but also as an important site for the negative affective dimension of pain. Pituitary adenylate cyclase activating polypeptide (PACAP), a neuropeptide whose terminals are abundant in the CeA, is strongly implicated in the stress response as well as in pain processing. Here, using Cre-dependent viral vectors, we explored in greater detail the role of the PACAP projection to the CeA that originates in the lateral parabrachial nucleus (LPB). METHODS: We first performed a circuit mapping experiment by injecting an anterograde Cre-dependent virus expressing a fluorescent reporter in the LPB of PACAP-Cre mice and observing their projections. Then, we used a chemogenetic approach (a Cre-dependent Designer Receptors Activated by Designer Drugs, DREADDs) to assess the effects of the direct stimulation of the PACAP LPB to CeA projection on general locomotor activity, anxiety-like behavior (using a defensive withdrawal test), and mechanical pain sensitivity (using the von Frey test). RESULTS: We found that the CeA, together with other areas, is one of the major downstream projection targets of PACAP neurons originating in the lateral parabrachial nucleus (LPB). In the DREADD experiment, we then found that the selective activation of this neuronal pathway is sufficient to increase both anxiety-like behavior and mechanical pain sensitivity in mice, without affecting general locomotor activity. CONCLUSION: In conclusion, our data suggest that the dysregulation of this circuit may contribute to a variety of anxiety disorders and chronic pain states, and that PACAP may represent an important therapeutic target for the treatment of these conditions.


Asunto(s)
Núcleo Amigdalino Central , Dolor Crónico , Ratones , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Núcleo Amigdalino Central/metabolismo , Hiperalgesia/metabolismo , Dolor Crónico/metabolismo , Ansiedad/metabolismo , Enfermedad Crónica , Neuronas/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-37421551

RESUMEN

Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.

17.
Front Neurosci ; 17: 1152594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266541

RESUMEN

Narcolepsy is a sleep disorder characterized by chronic and excessive daytime sleepiness, and sudden intrusion of sleep during wakefulness that can fall into two categories: type 1 and type 2. Type 1 narcolepsy in humans is widely believed to be caused as a result of loss of neurons in the brain that contain the key arousal neuropeptide Orexin (Orx; also known as Hypocretin). Patients with type 1 narcolepsy often also present with cataplexy, the sudden paralysis of voluntary muscles which is triggered by strong emotions (e.g., laughter in humans, social play in dogs, and chocolate in rodents). The amygdala is a crucial emotion-processing center of the brain; however, little is known about the role of the amygdala in sleep/wake and narcolepsy with cataplexy. A collection of reports across human functional neuroimaging analyses and rodent behavioral paradigms points toward the amygdala as a critical node linking emotional regulation to cataplexy. Here, we review the existing evidence suggesting a functional role for the amygdala network in narcolepsy, and build upon a framework that describes relevant contributions from the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and the extended amygdala, including the bed nucleus of stria terminalis (BNST). We propose that detailed examinations of amygdala neurocircuitry controlling transitions between emotional arousal states may substantially advance progress in understanding the etiology of narcolepsy with cataplexy, leading to enhanced treatment opportunities.

18.
Neurosci Biobehav Rev ; 146: 105039, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634832

RESUMEN

We suggest that to understand complex behaviors associated with fear and anxiety, we need to understand brain processes at the collective, network level. But what should be the type and spatial scale of the targeted circuits/networks? Not only are multi-region interactions essential-including complex reciprocal interactions, loops, and other types of arrangement-but it is profitable to characterize circuits spanning the entire neuroaxis. In particular, it is productive to conceptualize the circuits contributing to fear/anxiety as embedded into large-scale connectional systems. We discuss circuits involving the basolateral amygdala that contribute to aversive conditioning and fear extinction. In addition, we highlight the importance of the extended amygdala (central nucleus of the amygdala and bed nucleus of the stria terminalis) cortical-subcortical loop, which allows large swaths of cortex and subcortex to influence fear and anxiety. In this manner, fear/anxiety can be understood not only based on traditional "descending" mechanisms involving the hypothalamus and brainstem, but in terms of a considerably broader reentrant organization.


Asunto(s)
Miedo , Núcleos Septales , Humanos , Extinción Psicológica , Ansiedad , Encéfalo , Trastornos de Ansiedad
19.
Alcohol ; 108: 55-64, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36539069

RESUMEN

Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption. The basolateral amygdala (BLA), central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are brain regions that process stress, anxiety, and reward; they are also implicated in modulating ethanol intake. Little is understood, however, about how astrocyte expression in each region is modulated by chronic and binge-like ethanol drinking patterns. In the present report, we utilized two separate animal models of excessive drinking: chronic intermittent ethanol (CIE) and "Drinking-in-the-dark" (DID). Following these paradigms, animal brains were processed through immunohistochemistry (IHC) and stained for glial fibrillary acidic protein (GFAP). Collected data illustrated a sex-dependent relationship between ethanol intake and GFAP immunoreactivity (IR) in the BLA and BNST, but not in the CeA. Specifically, CIE and DID ethanol drinking resulted in blunted GFAP-IR (specifically via GFAP-positive cell count) in the BLA and BNST, particularly in males. These findings may implicate sex-dependent ethanol-induced changes in BLA and BNST astrocytes, providing a potential therapeutic target for anxiety and stress disorders.


Asunto(s)
Astrocitos , Etanol , Ratones , Animales , Masculino , Etanol/farmacología , Ratones Endogámicos C57BL , Amígdala del Cerebelo , Consumo de Bebidas Alcohólicas/metabolismo
20.
Neuropharmacology ; 225: 109404, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572178

RESUMEN

Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.


Asunto(s)
Núcleos Septales , Humanos , Privación Materna , Ansiedad , Miedo/fisiología , Trastornos de Ansiedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA