Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vis Neurosci ; 32: E019, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26581040

RESUMEN

Anatomical and electrophysiological studies have provided us with detailed information regarding the extent and topography of the primary (V1) and secondary (V2) visual areas in primates. The consensus about the V1 and V2 maps, however, is in sharp contrast with controversies regarding the organization of the cortical areas lying immediately rostral to V2. In this review, we address the contentious issue of the extent of the third visual area (V3). Specifically, we will argue for the existence of both ventral (V3v) and dorsal (V3d) segments of V3, which are located, respectively, adjacent to the anterior border of ventral and dorsal V2. V3v and V3d would together constitute a single functional area with a complete representation of both upper and lower visual hemifields. Another contentious issue is the organization of the parietal-occipital (PO) area, which also borders the rostral edge of the medial portion of dorsal V2. Different from V1, V2, and V3, which exhibit a topography based on the defined lines of isoeccentricity and isopolar representation, area PO only has a systematic representation of polar angles, with an emphasis on the peripheral visual field (isoeccentricity lines are not well defined). Based on the connectivity patterns of area PO with distinct cytochrome oxidase modules in V2, we propose a subdivision of the dorsal stream of visual information processing into lateral and medial domains. In this model, area PO constitutes the first processing instance of the dorsal-medial stream, coding for the full-field flow of visual cues during navigation. Finally, we compare our findings with those in other species of Old and New World monkeys and argue that larger animals, such as macaque and capuchin monkeys, have similar organizations of the areas rostral to V2, which is different from that in smaller New World monkeys.


Asunto(s)
Cercopithecidae , Platirrinos , Corteza Visual , Animales , Cercopithecidae/anatomía & histología , Cercopithecidae/fisiología , Platirrinos/anatomía & histología , Platirrinos/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología
2.
J Comp Neurol ; 523(17): 2618-36, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25982840

RESUMEN

The dorsal ventricular ridge (DVR) is one of the main components of the sauropsid pallium. In birds, the DVR is formed by an inner region, the nidopallium, and a more dorsal region, the mesopallium. The nidopallium contains discrete areas that receive auditory, visual, and multisensory collothalamic projections. These nidopallial nuclei are known to sustain reciprocal, short-range projections with their overlying mesopallial areas. Recent findings on the anatomical organization of the auditory DVR have shown that these short-range projections have a columnar organization that closely resembles that of the mammalian neocortex. However, it is unclear whether this columnar organization generalizes to other areas within the DVR. Here we examine in detail the organization of the visual DVR, performing small, circumscribed deposits of neuronal tracers as well as intracellular fillings in brain slices. We show that the visual DVR is organized in three main laminae, the thalamorecipient nucleus entopallium; a dorsally adjacent nidopallial lamina, the intermediate nidopallium; and a contiguous portion of the ventral mesopallium, the mesopallium ventrale. As in the case of the auditory DVR, we found a highly topographically organized system of reciprocal interconnections among these layers, which was formed by dorsoventrally oriented, discrete columnar bundles of axons. We conclude that the columnar organization previously demonstrated in the auditory DVR is not a unique feature but a general characteristic of the avian sensory pallium. We discuss these results in the context of a comparison between sauropsid and mammalian pallial organization.


Asunto(s)
Pollos/anatomía & histología , Neocórtex/anatomía & histología , Telencéfalo/anatomía & histología , Vías Visuales/anatomía & histología , Animales , Pollos/crecimiento & desarrollo , Lisina/análogos & derivados , Lisina/metabolismo , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Vías Visuales/fisiología
3.
J Comp Neurol ; 522(13): 3091-105, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24585707

RESUMEN

To study the circuitry related to the ventral stream of visual information processing and its relation to the cytochrome oxidase (CytOx) modules in visual area V2, we injected anterograde and retrograde cholera toxin subunit B (CTb) tracer into nine sites in area V4 in five Cebus apella monkeys. The injection site locations ranged from 2° to 10° eccentricity in the lower visual field representation of V4. Alternate cortical sections, cut tangentially to the pial surface or in the coronal plane, were stained for CTb immunocytochemistry or for CytOx histochemistry or for Nissl. Our results indicate that the V4-projecting cells and terminal-like labeling were located in interstripes and thin CytOx-rich stripes and avoided the CytOx-rich thick stripes in V2. The feedforward projecting cell bodies in V2 were primarily located in the supragranular layers and sparsely located in the infragranular layers, whereas the feedback projections (i.e., the terminal-like labels) were located in the supra- and infragranular layers. V4 injections of CTb resulted in labeling of the thin stripes and interstripes of V2 and provided an efficient method of distinguishing the V2 modules that were related to the ventral stream from the CytOx-rich thick stripes, related to the dorsal stream. In V2, there was a significant heterogeneity in the distribution of projections: feedforward projections were located in CytOx-rich thin stripes and in the CytOx-poor interstripes, whereas the feedback projections were more abundant in the thin stripes than in the interstripes.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Retroalimentación , Red Nerviosa/enzimología , Corteza Visual/anatomía & histología , Corteza Visual/enzimología , Vías Visuales/fisiología , Animales , Cebus , Toxina del Cólera/metabolismo , Red Nerviosa/citología , Neuronas/metabolismo , Campos Visuales
4.
Psychol. neurosci. (Impr.) ; 5(1): 3-9, Jan.-June 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-654424

RESUMEN

Early malnutrition refers to inadequate nutrition during the critical period of nervous system development followed by nutritional recovery, resulting in a short stature according to age but normal weight according to short stature. We measured the effects of early malnutrition on contrast sensitivity (CS) to concentric circular gratings in 18 children of both sexes, aged 8 to 11 years (mean = 9.2 years, standard deviation = .99 years). Nine of the children were eutrophic (E group), and nine experienced early malnutrition (EM group) based on state healthcare records and Waterlow's anthropometric parameters. Contrast sensitivity to four spatial frequencies (.25, 1.0, 2.0, and 8.0 cycles per degree [cpd]) was measured using a temporal two-alternative forced-choice psychophysical method with mean luminance of 40.1 cd/m². Statistical analyses showed significant differences between groups and a group × frequency interaction. EM group was significantly less sensitive than the E group to the 8.0 cpd frequency and needed 1.49-times more contrast to detect the gratings. These results suggest that early malnutrition impairs CS to high-spatial-frequency concentric circular gratings in children. Therefore, early malnutrition, which is known to affect primary visual cortical areas, may also affect higher visual cortical areas such as V4 and the inferotemporal cortex.


Asunto(s)
Humanos , Masculino , Femenino , Niño , Trastornos de la Nutrición del Niño , Sensibilidad de Contraste
5.
Psychol. neurosci. (Impr.) ; 5(1): 3-9, Jan.-June 2012. ilus, tab
Artículo en Inglés | Index Psicología - Revistas | ID: psi-56198

RESUMEN

Early malnutrition refers to inadequate nutrition during the critical period of nervous system development followed by nutritional recovery, resulting in a short stature according to age but normal weight according to short stature. We measured the effects of early malnutrition on contrast sensitivity (CS) to concentric circular gratings in 18 children of both sexes, aged 8 to 11 years (mean = 9.2 years, standard deviation = .99 years). Nine of the children were eutrophic (E group), and nine experienced early malnutrition (EM group) based on state healthcare records and Waterlow's anthropometric parameters. Contrast sensitivity to four spatial frequencies (.25, 1.0, 2.0, and 8.0 cycles per degree [cpd]) was measured using a temporal two-alternative forced-choice psychophysical method with mean luminance of 40.1 cd/m². Statistical analyses showed significant differences between groups and a group × frequency interaction. EM group was significantly less sensitive than the E group to the 8.0 cpd frequency and needed 1.49-times more contrast to detect the gratings. These results suggest that early malnutrition impairs CS to high-spatial-frequency concentric circular gratings in children. Therefore, early malnutrition, which is known to affect primary visual cortical areas, may also affect higher visual cortical areas such as V4 and the inferotemporal cortex.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Niño , Trastornos de la Nutrición del Niño , Sensibilidad de Contraste
6.
Biol. Res ; 41(4): 405-412, Dec. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-518396

RESUMEN

The anteromedial extrastriate complex has been proposed to play an essential role in a spatial orientation system in rats. To gain more information about that possible role, in the present work, two questions were addressed: 1. Are allocentric visual cues relevant for acquisition of the orientation task in the Lashley III maze? 2. Is this integration of allocentric inputs in the anteromedial visual complex relevant in the retention of this test? While a control group of rats was trained keeping the maze in the same position, the experimental group was trained with the maze rotated counterclockwise by 144 degrees from session to session. Control rats reached learning criterion significantly earlier and with less errors than the experimental ones (p<.05). After 11 sessions, rats of both groups received stereotaxic injections of ibotenic acid in the anteromedial complex. In the retention test one week after surgery, the control group, which had been able to learn using egocentric and allocentric visual cues, showed a greater deficit than the experimental animals (p<.05). These results confirm the role of the anteromedial complex in the processing of visuospatial orientation tasks and demonstrate the integration of allocentric visual cues in the solution of those tasks.


Asunto(s)
Animales , Masculino , Ratas , Aprendizaje por Laberinto/fisiología , Orientación/fisiología , Retención en Psicología/fisiología , Corteza Visual/fisiología , Señales (Psicología) , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Iboténico/farmacología , Corteza Visual/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA