Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Neurotox Res ; 42(4): 35, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008165

RESUMEN

This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.


Asunto(s)
Apoptosis , Autofagia , Proteína 3 de Unión a Ácidos Grasos , Mitocondrias , Neuronas , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Apoptosis/fisiología , Autofagia/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratones , Mitocondrias/metabolismo , Masculino , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteína 3 de Unión a Ácidos Grasos/genética , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estrés Oxidativo/fisiología
2.
Cell Metab ; 36(5): 1144-1163.e7, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38574738

RESUMEN

Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.


Asunto(s)
Osteoblastos , Animales , Osteoblastos/metabolismo , Osteoblastos/citología , Ratones , Huesos/metabolismo , Proteómica , Ratones Endogámicos C57BL , Masculino , Envejecimiento/metabolismo , Humanos , Senescencia Celular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Multiómica
3.
Alzheimers Dement (N Y) ; 10(1): e12440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356471

RESUMEN

INTRODUCTION: While Alzheimer's disease (AD) is defined by amyloid-ß plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS: We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION: Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-ß and tau will be crucial for optimizing personalized treatment strategies. Highlights: A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.

4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982599

RESUMEN

Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Ácidos Grasos , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Carnitina , Miocitos Cardíacos/metabolismo
5.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36978893

RESUMEN

Subjects with type 2 diabetes mellitus (T2D) are at increased risk for heart failure (HF). The cardiac-specific (FABP3) and adipose-tissue-specific (FABP4) types of the fatty acid binding proteins have been associated with both all-cause and cardiovascular (CV) mortality. The aim of this study was to explore the prognosis value of FABP3 and FABP4 in ambulatory subjects with chronic HF (CHF), with and without T2D. A prospective study involving 240 ambulatory CHF subjects was performed. Patients were followed-up for a mean of 5.78 ± 3.30 years and cause of death (if any) was recorded. Primary endpoints were defined as all-cause and CV death, and a composite endpoint that included CV death or hospitalization for HF was included as a secondary endpoint. Baseline serum samples were obtained and the serum FABP3 and FABP4 concentrations were assessed by sandwich enzyme-linked immunosorbent assay. Survival analysis was performed with multivariable Cox regressions, using Fine and Gray competing risks models when needed, to explore the prognostic value of FABP3 and FABP4 concentrations, adjusting for potential confounders. Type 2 diabetes mellitus was highly prevalent, accounting for 47.5% for total subjects with CHF. Subjects with T2D showed higher mortality rates (T2D: 69.30%; non-T2D: 50.79%, p = 0.004) and higher serum FABP3 (1829.3 (1104.9-3440.5) pg/mL vs. 1396.05 (820.3-2362.16) pg/mL, p = 0.007) and FABP4 (45.5 (27.6-79.8) ng/mL vs. 34.1 (24.09-55.3) ng/mL, p = 0.006) concentrations compared with non-T2D CHF subjects. In the whole study cohort, FABP3 was independently associated with all-cause death, and both FABP3 and FABP4 concentrations were associated with CV mortality. The predictive values of these two molecules for all-cause (FABP3: HR 1.25, 95% CI 1.09-1.44; p = 0.002. FABP4: HR 2.21, 95% CI 1.12-4.36; p = 0.023) and CV mortality (FABP3: HR 1.28, 95% CI 1.09-1.50; p = 0.002. FABP4: HR 4.19, 95% CI 2.21-7.95; p < 0.001) were only statistically significant in the subgroup of subjects with T2D. Notably, FABP4 (HR 2.07, 95% CI 1.11-3.87; p = 0.022), but not FABP3, also predicted the occurrence of the composite endpoint (death or hospitalization for HF) only in subjects with T2D. All these associations were not found in CHF subjects without T2D. Our findings support the usefulness of serum FABP3 and FABP4 concentrations as independent predictors for the occurrence of all-cause and CV mortality in ambulatory subjects with CHF with T2D.

6.
CNS Neurosci Ther ; 29(6): 1547-1560, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786129

RESUMEN

AIMS: We previously found that a decoy peptide derived from the C-terminal sequence of α-Synuclein (αSyn) prevents cytotoxic αSyn aggregation caused by fatty acid-binding protein 3 (FABP3) in vitro. In this study, we continued to utilize αSyn-derived peptides to further validate their effects on αSyn neurotoxicity and behavioral impairments in αSyn preformed fibrils (PFFs)-injected mouse model of Parkinson's disease (PD). METHODS: Mice were injected with αSyn PFFs in the bilateral olfactory bulb (OB) and then were subjected to behavioral analysis at 2-week intervals post-injection. Peptides nasal administration was initiated one week after injection. Changes in phosphorylation of αSyn and neuronal damage in the OB were measured using immunostaining at week 4. The effect of peptides on the interaction between αSyn and FABP3 was examined using co-immunoprecipitation. RESULTS: αSyn PFF-injected mice showed significant memory loss but no motor function impairment. Long-term nasal treatment with peptides effectively prevented memory impairment. In peptide-treated αSyn PFF-injected mice, the peptides entered the OB smoothly through the nasal cavity and were mainly concentrated in neurons in the mitral cell layer, significantly suppressing the excessive phosphorylation of αSyn and reducing the formation of αSyn-FABP3 oligomers, thereby preventing neuronal death. The addition of peptides also blocked the interaction of αSyn and FABP3 at the recombinant protein level, and its effect was strongest at molar concentrations comparable to those of αSyn and FABP3. CONCLUSIONS: Our findings suggest that the αSyn decoy peptide represents a novel therapeutic approach for reducing the accumulation of toxic αSyn-FABP3 oligomers in the brain, thereby preventing the progression of synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Amnesia/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Trastornos de la Memoria/metabolismo
7.
EClinicalMedicine ; 55: 101766, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36531981

RESUMEN

Background: Patients with peripheral arterial disease (PAD) often remain undiagnosed and therefore suboptimally managed. Here, we investigated the diagnostic and prognostic potential of fatty acid binding protein 3 (FABP3) in patients with PAD. Methods: In the discovery phase, 374 PAD and 184 non-PAD patients were recruited from vascular surgery ambulatory clinics at St. Michael's Hospital (Toronto, Ontario, Canada) between October 4, 2017 to October 29, 2018. The diagnostic ability of baseline FABP3 level was investigated through receiver operator characteristic (ROC) curves to determine two cutoff points: 1) an exclusionary "rule out" cutoff point, and 2) a confirmatory "rule in" cutoff point. Next, these cutoff points were confirmed in the external validation phase using a separate cohort of 312 patients (180 PAD and 132 non-PAD) recruited from ambulatory vascular surgery clinics at St. Michael's Hospital (Canada) between November 6, 2018-July 30, 2019. Cox regression analyses were used to explore the independent association between FABP3 and major adverse limb events (MALE - defined as need for arterial revascularization or major amputation) and decrease in ankle-brachial index (ABI -defined as drop ≥0.15) during 3 years of follow-up. Findings: In the discovery phase, FABP3 levels were significantly elevated in patients with PAD compared to non-PAD patients. ROC analysis demonstrated that FABP3 had an AUC of 0.83 (95% CI: 0.81-0.86, p-value < 0.001). FABP3 exclusionary cutoff was <1.55 ng/ml (sensitivity = 96%; specificity = 40%), whereas FABP3 confirmatory cutoff was >3.55 ng/ml (sensitivity = 43%; specificity = 95%) - values that were confirmed in the external validation phase. Cox regression analysis demonstrated FABP3 to be an independent predictor of increase in MALE [HR = 1.14 (1.03-1.29); p-value = 0.010] and worsening PAD status (drop in ABI >0.15 [HR = 1.11 (1.02-1.19); p-value = 0.009]). Interpretation: Our findings suggested that FABP3 levels can be used as both a diagnostic and prognostic biomarker for PAD, and may facilitate risk stratification in select individuals for purposes of vascular evaluation or intensive medical management. Funding: Funding for this study was provided by the Bill and Vicky Blair Foundation.

8.
Cytokine ; 162: 156090, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481477

RESUMEN

BACKGROUND: Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS: BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS: Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-ß1 treatment. Moreover, TGF-ß1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION: Exosomal miR-29a derived from TGF-ß1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tenocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo
9.
Anim Biotechnol ; 34(6): 1960-1967, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35416753

RESUMEN

Fatty acid binding protein 3 (FABP3) is involved in signal transduction pathways, and in the uptake and utilization of long-chain fatty acids. However, the transcriptional regulation of FABP3 in goat is unclear. In this study, the FABP3 5' flanking region was amplified from goat (Capra hircus) genomic DNA. Luciferase reporter vectors containing promoter fragments of five different lengths were constructed and transfected into dairy goat mammary epithelial cells. The region of the promoter located between -1801 and -166 bp upstream of the transcription start site (TSS) exhibited the highest luciferase activity, and contained two cAMP response elements (CREs) located at -1632 bp and -189 bp. Interference with CREB1 significantly downregulated FABP3 promoter activity. In addition, FABP3 promoter activity was significantly reduced after mutation of the CRE1 (-1632 bp) and CRE2 (-189 bp) sites. Further analysis indicated that the CRE2 site was essential for the transcriptional activity induced by CREB1. These results demonstrated that CREB1 is involved in the transcriptional regulation of FABP3 expression in the goat mammary gland via a direct mechanism, thus revealing a novel signaling pathway involved in fatty acid metabolism in goat.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Cabras , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína 3 de Unión a Ácidos Grasos/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Cabras/genética , Cabras/metabolismo , Regiones Promotoras Genéticas/genética , Células Epiteliales/metabolismo
10.
Biology (Basel) ; 11(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36290402

RESUMEN

Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.

11.
J Alzheimers Dis ; 90(1): 61-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093702

RESUMEN

We examined ethnoracial differences in fatty acid binding protein (FABP)-a family of intracellular lipid carriers-and clarified FABP3 associations with gray and white matter. Relative to Mexican Americans (MAs), FABP3 was higher in Non-Hispanic Whites (NHWS, p < 0.001). Regressions revealed, independent of traditional AD markers, FABP3 was associated with neurodegeneration (B = -0.08, p = 0.003) and WMH burden (B = 0.18, p = 0.03) in MAs, but not in NHWs (ps > 0.18). Findings suggest FABP3 is related to neural health within MAs and highlight its potential as a prognostic marker of brain health in ethnoracially diverse older adults.


Asunto(s)
Enfermedades Neurodegenerativas , Sustancia Blanca , Anciano , Humanos , Biomarcadores , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Americanos Mexicanos , Sustancia Blanca/diagnóstico por imagen , Blanco , Enfermedades Neurodegenerativas/diagnóstico por imagen
12.
Biomedicines ; 10(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36140383

RESUMEN

Fatty acid binding proteins (FABPs) are proteins found in the cytosol that contribute to disorders related to the cardiovascular system, including atherosclerosis and metabolic syndrome. Functionally, FABPs serve as intracellular lipid chaperones, interacting with hydrophobic ligands and mediating their transportation to sites of lipid metabolism. To date, nine unique members of the FABP family (FABP 1-9) have been identified and classified according to the tissue in which they are most highly expressed. In the literature, FABP3 has been shown to be a promising clinical biomarker for coronary and peripheral artery disease. Given the rising incidence of cardiovascular disease and its associated morbidity/mortality, identifying biomarkers for early diagnosis and treatment is critical. In this review, we highlight key discoveries and recent studies on the role of FABP3 in cardiovascular disorders, with a particular focus on its clinical relevance as a biomarker for peripheral artery disease.

13.
Neurobiol Aging ; 116: 80-91, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35584575

RESUMEN

It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-ß (Aß42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in 2 samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein (FABP3)=, total-tau, neurogranin, and neurofilament light (NFL) (n = 189, scans = 721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by Aß42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Neurogranina , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Neurogranina/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
14.
Rheumatology (Oxford) ; 61(7): 3071-3081, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34718429

RESUMEN

OBJECTIVE: To identify the role of fatty acid binding protein 3 (FABP3) in vascular fibrosis in Takayasu's arteritis (TAK) and to explore the underlying molecular mechanism. METHODS: The expression of FABP3 and extracellular matrix proteins (ECMs) were detected in aorta tissues from TAK patients (n = 12) and healthy controls (n = 8) by immunohistochemistry. The concentration of serum proteins was determined by ELISA. CCK8 and Ki67 staining were used to measure aorta adventitial fibroblast (AAF) proliferation. Widely targeted lipidomic profiling was used to screen for associated metabolic pathways. Changes in ECMs and fatty acid oxidation (FAO)-related enzymes were determined by RT-qPCR and Western blot. The interactions between FABP3 and these enzymes were explored with a co-immunoprecipitation (Co-IP) assay. RESULTS: The expression of FABP3 was increased in the thickened adventitia of TAK patients and was positively correlated with the serum expression of ECMs. FABP3 knockdown inhibited AAF proliferation and ECM production, whereas FABP3 overexpression enhanced these processes. Further analysis revealed that FABP3 upregulation promoted carnitine palmitoyltransferase 1A and carnitine/acylcarnitine carrier protein (CACT) expression, two key enzymes in FAO, as well as adenosine triphosphate (ATP) levels. FABP3 and CACT were co-localized in the adventitia and bound to each other in AAFs. Etomoxir reversed the enhanced FAO, ATP production, AAF proliferation and ECM production mediated by FABP3 upregulation. Treatment with 60 g/day curcumin granules for 3 months reduced the level of serum FABP3. Curcumin also inhibited vascular fibrosis by reducing FABP3-enhanced FAO in AAFs. CONCLUSION: Elevated FABP3 expression accelerated vascular fibrosis in TAK, which was likely mediated by promoting FAO in AAFs.


Asunto(s)
Curcumina , Proteína 3 de Unión a Ácidos Grasos , Arteritis de Takayasu , Adenosina Trifosfato , Adventicia/patología , Aorta/patología , Curcumina/metabolismo , Proteína 3 de Unión a Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Arteritis de Takayasu/metabolismo
15.
J Stroke Cerebrovasc Dis ; 30(11): 106068, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34455150

RESUMEN

BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) is associated with activation of the inflammatory cascade contributing to unfavorable outcome and secondary complications, such as delayed cerebral ischemia (DCI). Both fatty acid-binding protein 3 (FABP3) and CXC-chemokine ligand 16 (CXCL-16) have been linked to vascular inflammation and cellular death. The authors aimed to assess the 30-day prognostic value of serum levels of FABP3 and CXCL-16 and explore their associations with DCI in aSAH patients. METHODS: A total of 60 patients with aSAH were prospectively enrolled. Sampling for markers was done at 24 hours after the index event. FABP3 and CXCL-16 serum concentrations were determined by MilliPlex multiplex immunoassay method. The primary endpoint was unfavorable outcome at Day 30 based on the modified Rankin Scale. RESULTS: Both FABP3 and CXCL-16 levels were significantly elevated in patients with unfavorable outcome compared to those with favorable outcome after aSAH (FABP3: 2133 pg/mL, IQR: 1053-4567 vs. 3773, 3295-13116; p<0.003 and CXCL-16: 384 pg/mL, 313-502 vs. 498, 456-62, p<0.001). The area under the curve (AUC) for serum CXCL-16 levels as a predictor of unfavorable outcome at Day 30 was 0.747 (95% CI =0.622-0.871; p<0.001). Based on binary logistic regression analysis, serum CXCL-16 with a cut-off level >446.7 ng/L independently predicted Day 30 unfavorable outcome with a sensitivity of 81% and a specificity of 62%. Neither CXCL-16 nor FABP3 showed a significant correlation with DCI. CONCLUSION: Early FABP3 and CXCL-16 levels are significantly associated with poor 30-day outcome in patients with aSAH.


Asunto(s)
Quimiocina CXCL16 , Proteína 3 de Unión a Ácidos Grasos , Hemorragia Subaracnoidea , Biomarcadores/sangre , Quimiocina CXCL16/sangre , Proteína 3 de Unión a Ácidos Grasos/sangre , Humanos , Pronóstico , Hemorragia Subaracnoidea/sangre , Hemorragia Subaracnoidea/terapia
16.
Front Cardiovasc Med ; 8: 705666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355033

RESUMEN

Background: Pulmonary arterial hypertension (PAH) is a progressive proliferative vasculopathy associated with mechanical and electrical changes, culminating in increased vascular resistance, right ventricular (RV) failure, and death. With a main focus on invasive tools, there has been an underutilization of echocardiography, electrocardiography, and biomarkers to non-invasively assess the changes in myocardial and pulmonary vascular structure and function during the course of PAH. Methods: A SU5416-hypoxia rat model was used for inducing PAH. Biventricular functions were measured using transthoracic two-dimensional (2D) echocardiography/Doppler (echo/Doppler) at disease onset (0 week), during progression (3 weeks), and establishment (5 weeks). Similarly, electrocardiography was performed at 0, 3, and 5 weeks. Invasive hemodynamic measurements and markers of cardiac injury in plasma were assessed at 0, 3, and 5 weeks. Results: Increased RV systolic pressure (RVSP) and rate of isovolumic pressure rise and decline were observed at 0, 3, and 5 weeks in PAH animals. EKG showed a steady increase in QT-interval with progression of PAH, whereas P-wave height and RS width were increased only during the initial stages of PAH progression. Echocardiographic markers of PAH progression and severity were also identified. Three echocardiographic patterns were observed: a steady pattern (0-5 weeks) in which echo parameter changed progressively with severity [inferior vena cava (IVC) expiratory diameter and pulmonary artery acceleration time (PAAT)], an early pattern (0-3 weeks) where there is an early change in parameters [RV fractional area change (RV-FAC), transmitral flow, left ventricle (LV) output, estimated mean PA pressure, RV performance index, and LV systolic eccentricity index], and a late pattern (3-5 weeks) in which there is only a late rise at advanced stages of PAH (LV diastolic eccentricity index). RVSP correlated with PAAT, PAAT/PA ejection times, IVC diameters, RV-FAC, tricuspid systolic excursion, LV systolic eccentricity and output, and transmitral flow. Plasma myosin light chain (Myl-3) and cardiac troponin I (cTnI) increased progressively across the three time points. Cardiac troponin T (cTnT) and fatty acid-binding protein-3 (FABP-3) were significantly elevated only at the 5-week time point. Conclusion: Distinct electrocardiographic and echocardiographic patterns along with plasma biomarkers were identified as useful non-invasive tools for monitoring PAH progression.

17.
Exp Cell Res ; 407(1): 112768, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370993

RESUMEN

Atherosclerosis is the underlying contributing factor of cardiovascular disease, which is a process of inflammation and lipid-rich lesion. Macrophage-derived foam cell is a key hallmark of atherosclerosis and connected with various factors of lipid metabolism. Here, we showed that fatty acid binding protein 3 (FABP3) was upregulated in the aorta of ApoE-/- mice with high-fat-diet (HFD) feeding. Knockdown of FABP3 in HFD-fed ApoE-/- mice notably facilitated cholesterol efflux, inhibited macrophage foam cell formation, and thus prevented atherogenesis. Furthermore, FABP3 silencing decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ). Mechanistic studies had disclosed the involvement of PPARγ signaling in balancing cholesterol uptake and efflux and diminishing foam cell formation. These findings firstly revealed an anti-atherogenic role of FABP3 silencing in preventing foamy macrophage formation partly through PPARγ, which might be a beneficial approach for therapying atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Proteína 3 de Unión a Ácidos Grasos/deficiencia , Macrófagos/metabolismo , Animales , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Macrófagos/patología , Macrófagos Peritoneales/metabolismo , PPAR gamma/metabolismo
18.
J Clin Med ; 10(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300173

RESUMEN

BACKGROUND: Lipid metabolism-related biomarkers gain increasing researchers interest in the field of neurodegenerative disorders. Mounting evidence have indicated the role of fatty acid-binding proteins and pathology lipid metabolism in Alzheimer's Disease (AD). The imbalance of fatty acids (FA) and lipids may negatively affect brain functions related to neurodegenerative disorders. The ApoE4 and FABP3 proteins may reflect processes leading to neurodegeneration. This study aimed to evaluate the relationship between the CSF levels of FABP3 and ApoE4 proteins and cognitive decline as well as the diagnostic performance of these candidate biomarkers in AD and mild cognitive impairment (MCI). METHODS: A total of 70 subjects, including patients with AD, MCI, and non-demented controls, were enrolled in the study. CSF concentrations of FABP3 and ApoE4 were measured using immunoassay technology. RESULTS: Significantly higher CSF concentrations of FABP3 and ApoE4 were observed in AD patients compared to MCI subjects and individuals without cognitive impairment. Both proteins were inversely associated with Aß42/40 ratio: ApoE4 (rho = -0.472, p < 0.001), and FABP3 (rho = -0.488, p < 0.001) in the whole study group, respectively. Additionally, FABP3 was negatively correlated with Mini-Mental State Examination score in the whole study cohort (rho = -0.585 p < 0.001). CONCLUSION: Presented results indicate the pivotal role of FABP3 and ApoE4 in AD pathology as lipid-related biomarkers, but studies on larger cohorts are needed.

19.
Biomedicines ; 9(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068550

RESUMEN

Fatty acid-binding proteins (FABPs) regulate the intracellular dynamics of fatty acids, mediate lipid metabolism and participate in signaling processes. However, the therapeutic efficacy of targeting FABPs as novel therapeutic targets for cerebral ischemia is not well established. Previously, we synthesized a novel FABP inhibitor, i.e., FABP ligand 6 [4-(2-(5-(2-chlorophenyl)-1-(4-isopropylphenyl)-1H-pyrazol-3-yl)-4-fluorophenoxy)butanoic acid] (referred to here as MF6). In this study, we analyzed the ability of MF6 to ameliorate transient middle cerebral artery occlusion (tMCAO) and reperfusion-induced injury in mice. A single MF6 administration (3.0 mg/kg, per os) at 0.5 h post-reperfusion effectively reduced brain infarct volumes and neurological deficits. The protein-expression levels of FABP3, FABP5 and FABP7 in the brain gradually increased after tMCAO. Importantly, MF6 significantly suppressed infarct volumes and the elevation of FABP-expression levels at 12 h post-reperfusion. MF6 also inhibited the promotor activity of FABP5 in human neuroblastoma cells (SH-SY5Y). These data suggest that FABPs elevated infarct volumes after ischemic stroke and that inhibiting FABPs ameliorated the ischemic injury. Moreover, MF6 suppressed the inflammation-associated prostaglandin E2 levels through microsomal prostaglandin E synthase-1 expression in the ischemic hemispheres. Taken together, the results imply that the FABP inhibitor MF6 can potentially serve as a neuroprotective therapeutic for ischemic stroke.

20.
Ther Clin Risk Manag ; 17: 563-570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113113

RESUMEN

OBJECTIVE: To investigate the diagnostic value of plasma miRNA-497, cardiac troponin I (cTnI), fatty acid binding protein 3 (FABP3), glycogen phosphorylase isoenzyme BB (GPBB) in pediatric sepsis complicated with myocardial injury. METHODS: From August 2018 to February 2020, 82 children with sepsis admitted to our hospital and 50 health children who came for physical examination (defined as control group) were enrolled in this study. Children with sepsis and myocardial injury were enrolled in the combined group (n=35), and those without myocardial injury were enrolled in the sepsis group (n=47). General data of three groups were collected, and the levels of miRNA-497, FABP3, GPBB, creatine kinase isoenzyme MB (CK-MB), procalcitonin (PCT), C-reactive protein (CRP), cTnI and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were detected and the cardiac function was measured. The diagnostic value of plasma miRNA-497, cTnI, FABP3 and GPBB in pediatric sepsis complicated with myocardial injury was analyzed. RESULTS: The infection site of the combined group was not significantly different from that of the sepsis group. The levels of miRNA-497, FABP3, GPBB, CK-MB, PCT, CRP, cTnI, NT-proBNP in the combined group were all higher than those in the sepsis group and the control group (P<0.05), and the left ventricular ejection fraction (LVEF) in the combined group was significantly lower than that in the other two group (P<0.05). The area under the curve (AUC) of the combination of miRNA-497, FABP3, GPBB, and cTnI in the diagnosis of sepsis complicated with myocardial injury was significantly higher than that of CK-MB, PCT, CRP, NT-proBNP alone (P<0.05), but there was no significant difference when compared with miRNA-497, FABP3, GPBB and cTnI alone (P>0.05). When the optimal thresholds of miRNA-497, FABP3, GPBB, and cTnI were set to 2.03, 6.23ng/mL, 4.01ng/mL, 1.23ng/mL, respectively, the sensitivity was 95.65%, 88.89%, 82.61%, 87.50%, respectively; the specificity was 83.33%, 94.12%, 83.33%, 90.91%, respectively; and the accuracy was 91.43%, 91.43%, 82.86%, 88.57%, respectively. Pearson correlation analysis indicating that miRNA-497 was positively correlated with the levels of FABP3, GPBB, and cTnI in the combined group (r=0.821, 0.621, 0.782, P<0.05). CONCLUSION: Plasma miRNA-497, cTnI, FABP3, and GPBB levels were increased in pediatric sepsis complicated with myocardial injury, and their combination had high diagnostic value, which was of great clinical significance for early diagnosis and early treatment of pediatric sepsis complicated with myocardial injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA