Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 8: 716266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458291

RESUMEN

During the last decade, a plethora of novel therapies containing live microorganisms as active substance(s) has emerged with the aim to treat, prevent, or cure diseases in human beings. Both the Food and Drug Administration (FDA) and the European Directorate for the Quality of Medicines and Health Care (EDQM) codified these biotherapies as Live Biotherapeutic Products (LBPs). While these innovative products offer healthcare opportunities, they also represent a challenge for developers who need to set the most suitable designs for non-clinical and clinical studies in order to demonstrate a positive benefit/risk ratio through relevant quality, safety, and efficacy data that are expected by the drug competent authorities. This article describes how YSOPIA Bioscience, supported by the Pharmabiotic Research Institute (PRI), addressed the regulatory challenges during the early development phase of their single-strain LBP, Xla1, in order to obtain the necessary authorizations to bring this drug to the clinical stage.

2.
Alzheimers Dement (N Y) ; 3(2): 262-272, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29067332

RESUMEN

INTRODUCTION: A novel amyloid ß (Aß) synthetic peptide vaccine (UB-311) has been evaluated in a first-in-human trial with patients of mild-to-moderate Alzheimer's disease. We describe translational research covering vaccine design, preclinical characterization, and phase-I clinical trial with supportive outcome that advances UB-311 into an ongoing phase-II trial. METHODS: UB-311 is constructed with two synthetic Aß1-14-targeting peptides (B-cell epitope), each linked to different helper T-cell peptide epitopes (UBITh®) and formulated in a Th2-biased delivery system. The hAPP751 transgenic mouse model was used to perform the proof-of-concept study. Baboons and macaques were used for preclinical safety, tolerability, and immunogenicity evaluation. Patients with mild-to-moderate Alzheimer's disease (AD) were immunized by intramuscular route with 3 doses of UB-311 at weeks 0, 4, and 12, and monitored until week 48. Safety and immunogenicity were assessed per protocol, and preliminary efficacy was analyzed by Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Mini-Mental State Examination (MMSE), and Alzheimer's Disease Cooperative Study-Clinician's Global Impression of Change (ADCS-CGIC). RESULTS: UB-311 covers a diverse genetic background and facilitates strong immune response with high responder rate. UB-311 reduced the levels of Aß1-42 oligomers, protofibrils, and plaque load in hAPP751 transgenic mice. Safe and well-tolerated UB-311 generated considerable site-specific (Aß1-10) antibodies across all animal species examined. In AD patients, UB-311 induced a 100% responder rate; injection site swelling and agitation were the most common adverse events (4/19 each). A slower rate of increase in ADAS-Cog from baseline to week 48 was observed in the subgroup of mild AD patients (MMSE ≥ 20) compared with the moderate AD subgroup, suggesting that UB-311 may have a potential of cognition improvement in patients with early stage of Alzheimer's dementia. DISCUSSION: The UBITh® platform can generate a high-precision molecular vaccine with high responder rate, strong on-target immunogenicity, and a potential of cognition improvement, which support UB-311 for active immunotherapy in early-to-mild AD patients currently enrolled in a phase-II trial (NCT02551809).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA