Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Clin Transl Imaging ; 12(2): 137-155, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-39286295

RESUMEN

Purpose: Hypoxia is a major cause of radioresistance in head and neck cancer (HNC), resulting in treatment failure and disease recurrence. 18F-fluoromisonidazole [18F]FMISO PET has been proposed as a means of localising intratumoural hypoxia in HNC so that radiotherapy can be specifically escalated in hypoxic regions. This concept may not be deliverable in routine clinical practice, however, given that [18F]FMISO PET is costly, time consuming and difficult to access. The aim of this review was to summarise clinical studies involving [18F]FMISO PET to ascertain whether it can be used to guide radiotherapy treatment in HNC. Methods: A comprehensive literature search was conducted on PubMed and Web of Science databases. Studies investigating [18F]FMISO PET in newly diagnosed HNC patients were considered eligible for review. Results: We found the following important results from our literature review: 1)Studies have focussed on comparing [18F]FMISO PET to other hypoxia biomarkers, but currently there is no evidence of a strong correlation between [18F]FMISO and these biomarkers.2)The results of [18F]FMISO PET imaging are not necessarily repeatable, and the location of uptake may vary during treatment.3)Tumour recurrences do not always occur within the pretreatment hypoxic volume on [18F]FMISO PET.4)Dose modification studies using [18F]FMISO PET are in a pilot phase and so far, none have demonstrated the efficacy of radiotherapy dose painting according to [18F]FMISO uptake on PET. Conclusions: Our results suggest it is unlikely [18F]FMISO PET will be suitable for radiotherapy dose adaptation in HNC in a routine clinical setting. Part of the problem is that hypoxia is a dynamic phenomenon, and thus difficult to delineate on a single scan. Currently, it is anticipated that [18F]FMISO PET will remain useful within the research setting only.

2.
J Nucl Med ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266287

RESUMEN

Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with 18F-fluoromisonidazole (18F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret 18F-FMISO hypoxia PET. Methods: We randomly selected 123 patients with human papillomavirus-positive oropharyngeal cancer enrolled in a phase II trial who underwent 123 18F-FDG PET/CT and 134 18F-FMISO PET/CT scans. Four independent nuclear medicine physicians with no 18F-FMISO experience read the scans. Interpretation by a fifth nuclear medicine physician with over 2 decades of 18F-FMISO experience was the reference standard. Performance was evaluated after initial instruction and subsequent dedicated training. Scans were considered positive for hypoxia by visual assessment if 18F-FMISO uptake was greater than floor-of-mouth uptake. Additionally, SUVmax was determined to evaluate whether quantitative assessment using tumor-to-background ratios could be helpful to define hypoxia positivity. Results: Visual assessment produced a mean sensitivity and specificity of 77.3% and 80.9%, with fair interreader agreement (κ = 0.34), after initial instruction. After dedicated training, mean sensitivity and specificity improved to 97.6% and 86.9%, with almost perfect agreement (κ = 0.86). Quantitative assessment with an estimated best SUVmax ratio threshold of more than 1.2 to define hypoxia positivity produced a mean sensitivity and specificity of 56.8% and 95.9%, respectively, with substantial interreader agreement (κ = 0.66), after initial instruction. After dedicated training, mean sensitivity improved to 89.6% whereas mean specificity remained high at 95.3%, with near-perfect interreader agreement (κ = 0.86). Conclusion: Nuclear medicine physicians without 18F-FMISO hypoxia PET reading experience demonstrate much improved interreader agreement with dedicated training using specific interpretation criteria.

3.
Nucl Med Mol Imaging ; 58(4): 237-245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932755

RESUMEN

Positron emission tomography/computed tomography (PET/CT) has dramatically altered the landscape of noninvasive glioma evaluation, offering complementary insights to those gained through magnetic resonance imaging (MRI). PET/CT scans enable a multifaceted analysis of glioma biology, supporting clinical applications from grading and differential diagnosis to mapping the full extent of tumors and planning subsequent treatments and evaluations. With a broad array of specialized radiotracers, researchers and clinicians can now probe various biological characteristics of gliomas, such as glucose utilization, cellular proliferation, oxygen deficiency, amino acid trafficking, and reactive astrogliosis. This review aims to provide a recent update on the application of versatile PET/CT radiotracers in glioma research and clinical practice.

4.
BMC Vet Res ; 20(1): 196, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741109

RESUMEN

BACKGROUND: Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS: Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS: [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.


Asunto(s)
Enfermedades de los Perros , Misonidazol , Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Hipoxia Tumoral , Animales , Perros , Misonidazol/análogos & derivados , Tomografía Computarizada por Tomografía de Emisión de Positrones/veterinaria , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/tratamiento farmacológico , Femenino , Hipoxia Tumoral/efectos de los fármacos , Masculino , Neoplasias/veterinaria , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Tiosemicarbazonas/uso terapéutico , Tiosemicarbazonas/farmacología , Complejos de Coordinación
5.
EJNMMI Phys ; 11(1): 43, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722446

RESUMEN

BACKGROUND: The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [18F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal. RESULTS: The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 103% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV. CONCLUSIONS: The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.

6.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38457839

RESUMEN

Objective.Equivalent uniform aerobic dose (EUAD) is proposed for comparison of integrated cell survival in tumors with different distributions of hypoxia and radiation dose.Approach.The EUAD assumes that for any non-uniform distributions of radiation dose and oxygen enhancement ratio (OER) within a tumor, there is a uniform distribution of radiation dose under hypothetical aerobic conditions with OER = 1 that produces equal integrated survival of clonogenic cells. This definition of EUAD has several advantages. First, the EUAD allows one to compare survival of clonogenic cells in tumors with intra-tumor and inter-tumor variation of radio sensitivity due to hypoxia because the cell survival is recomputed under the same benchmark oxygen level (OER = 1). Second, the EUAD for homogeneously oxygenated tumors is equal to the concept of equivalent uniform dose.Main results. We computed the EUAD using radiotherapy dose and the OER derived from the18F-Fluoromisonidazole PET (18F-FMISO PET) images of hypoxia in patients with glioblastoma, the most common and aggressive type of primary malignant brain tumor. The18F-FMISO PET images include a distribution of SUV (Standardized Uptake Value); therefore, the SUV is converted to partial oxygen pressure (pO2) and then to the OER. The prognostic value of EUAD in radiotherapy for hypoxic tumors is demonstrated using correlation between EUAD and overall survival (OS) in radiotherapy for glioblastoma. The correction to the EUAD for the absolute hypoxic volume that traceable to the tumor control probability improves the correlation with OS.Significance. While the analysis proposed in this research is based on the18F-FMISO PET images for glioblastoma, the EUAD is a universal radiobiological concept and is not associated with any specific cancer or any specific PET or MRI biomarker of hypoxia. Therefore, this research can be generalized to other cancers, for example stage III lung cancer, and to other hypoxia biomarkers.


Asunto(s)
Glioblastoma , Neoplasias Pulmonares , Misonidazol/análogos & derivados , Humanos , Hipoxia/patología , Neoplasias Pulmonares/radioterapia , Oxígeno/metabolismo , Hipoxia de la Célula , Tomografía de Emisión de Positrones/métodos , Radiofármacos
7.
Methods Mol Biol ; 2755: 133-140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319574

RESUMEN

Tumor hypoxia is an essential factor related to malignancy, prognosis, and resistance to treatment. Positron emission tomography (PET) is a modality that visualizes the distribution of radiopharmaceuticals administered into the body. PET imaging with [18F]fluoromisonidazole ([18F]FMISO) identifies hypoxic tissues. Unlike [18F]fluorodeoxyglucose ([18F]FDG)-PET, fasting is not necessary for [18F]FMISO-PET, but the waiting time from injection to image acquisition needs to be relatively long (e.g., 2-4 h). [18F]FMISO-PET images can be displayed on an ordinary commercial viewer on a personal computer (PC). While visual assessment is fundamental, various quantitative indices such as tumor-to-muscle ratio have also been proposed. Several novel hypoxia tracers have been invented to compensate for the limitations of [18F]FMISO.


Asunto(s)
Misonidazol , Tomografía de Emisión de Positrones , Humanos , Ayuno , Fluorodesoxiglucosa F18 , Hipoxia/diagnóstico por imagen
8.
Math Biosci Eng ; 20(10): 17625-17645, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38052529

RESUMEN

The goal of this study is to develop a mathematical model that captures the interaction between evofosfamide, immunotherapy, and the hypoxic landscape of the tumor in the treatment of tumors. Recently, we showed that evofosfamide, a hypoxia-activated prodrug, can synergistically improve treatment outcomes when combined with immunotherapy, while evofosfamide alone showed no effects in an in vivo syngeneic model of colorectal cancer. However, the mechanisms behind the interaction between the tumor microenvironment in the context of oxygenation (hypoxic, normoxic), immunotherapy, and tumor cells are not fully understood. To begin to understand this issue, we develop a system of ordinary differential equations to simulate the growth and decline of tumors and their vascularization (oxygenation) in response to treatment with evofosfamide and immunotherapy (6 combinations of scenarios). The model is calibrated to data from in vivo experiments on mice implanted with colon adenocarcinoma cells and longitudinally imaged with [18F]-fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) to quantify hypoxia. The results show that evofosfamide is able to rescue the immune response and sensitize hypoxic tumors to immunotherapy. In the hypoxic scenario, evofosfamide reduces tumor burden by $ 45.07 \pm 2.55 $%, compared to immunotherapy alone, as measured by tumor volume. The model accurately predicts the temporal evolution of five different treatment scenarios, including control, hypoxic tumors that received immunotherapy, normoxic tumors that received immunotherapy, evofosfamide alone, and hypoxic tumors that received combination immunotherapy and evofosfamide. The average concordance correlation coefficient (CCC) between predicted and observed tumor volume is $ 0.86 \pm 0.05 $. Interestingly, the model values to fit those five treatment arms was unable to accurately predict the response of normoxic tumors to combination evofosfamide and immunotherapy (CCC = $ -0.064 \pm 0.003 $). However, guided by the sensitivity analysis to rank the most influential parameters on the tumor volume, we found that increasing the tumor death rate due to immunotherapy by a factor of $ 18.6 \pm 9.3 $ increases CCC of $ 0.981 \pm 0.001 $. To the best of our knowledge, this is the first study to mathematically predict and describe the increased efficacy of immunotherapy following evofosfamide.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Ratones , Animales , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/terapia , Hipoxia de la Célula , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/terapia , Modelos Animales de Enfermedad , Línea Celular Tumoral , Hipoxia/terapia , Inmunoterapia , Microambiente Tumoral
9.
Math Biosci ; 366: 109106, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931781

RESUMEN

Immunotherapies such as checkpoint blockade to PD1 and CTLA4 can have varied effects on individual tumors. To quantify the successes and failures of these therapeutics, we developed a stepwise mathematical modeling strategy and applied it to mouse models of colorectal and breast cancer that displayed a range of therapeutic responses. Using longitudinal tumor volume data, an exponential growth model was utilized to designate response groups for each tumor type. The exponential growth model was then extended to describe the dynamics of the quality of vasculature in the tumors via [18F] fluoromisonidazole (FMISO)-positron emission tomography (PET) data estimating tumor hypoxia over time. By calibrating the mathematical system to the PET data, several biological drivers of the observed deterioration of the vasculature were quantified. The mathematical model was then further expanded to explicitly include both the immune response and drug dosing, so that model simulations are able to systematically investigate biological hypotheses about immunotherapy failure and to generate experimentally testable predictions of immune response. The modeling results suggest elevated immune response fractions (> 30 %) in tumors unresponsive to immunotherapy is due to a functional immune response that wanes over time. This experimental-mathematical approach provides a means to evaluate dynamics of the system that could not have been explored using the data alone, including tumor aggressiveness, immune exhaustion, and immune cell functionality.


Asunto(s)
Neoplasias , Ratones , Animales , Neoplasias/terapia , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , Modelos Animales de Enfermedad , Inmunoterapia
10.
Nucl Med Biol ; 124-125: 108383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651917

RESUMEN

BACKGROUND: Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS: In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS: Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION: Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.


Asunto(s)
Neoplasias de la Mama , Nitroimidazoles , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Xenoinjertos , Distribución Tisular , Nitroimidazoles/química , Hipoxia , Tomografía de Emisión de Positrones/métodos , Hipoxia de la Célula , Radiofármacos
11.
PET Clin ; 18(4): 557-566, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369615

RESUMEN

Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
12.
World Neurosurg ; 175: e1364-e1374, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187346

RESUMEN

BACKGROUND: Cancer stemness and immunosuppressive tumor microenvironment (TME) in accordance with tumor oxygenation are variable during bevacizumab (Bev) therapy for glioblastoma (GBM). Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) reflects hypoxic TME. The aim of this study was to compare FMISO-PET and immunohistochemical findings of tumor oxygenation in the TME of GBM during Bev treatment. METHODS: Seven patients with newly diagnosed IDH-wildtype GBM underwent FMISO-PET during follow-up. Three patients received preoperative neoadjuvant Bev (neo-Bev) and subsequently underwent surgical resection. Reoperation was performed at the recurrence. FMISO-PET was performed before and after neo-Bev. Four patients who underwent tumor resection without neo-Bev were included as the control group. Expressions of hypoxic markers (carbonic anhydrase; CA9), stem cell markers (nestin, FOXM1), and immunoregulatory molecules (CD163, FOXP3, PD-L1) in tumor tissues were analyzed by immunohistochemistry (IHC). RESULTS: All 3 patients treated with neo-Bev showed decrease in FMISO accumulation in accordance with expressions of CA9 and FOXM1 compared with the control group. Two of these 3 patients at the recurrence showed increase in FMISO accumulation. IHC showed increased CA9-and FOXM1-positive cells in recurrent tumors. Expression of PD-L1 tended to be lower after neo-Bev compared with the control group. CONCLUSIONS: FMISO-PET effectively visualized TME oxygenation after neo-Bev. Increased FMISO accumulation at the time of recurrence, even under Bev treatment, suggests that FMISO-PET might be useful for monitoring the duration of Bev efficacy by reflecting tumor oxygenation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Bevacizumab/uso terapéutico , Antígeno B7-H1 , Terapia Neoadyuvante , Inmunohistoquímica , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Microambiente Tumoral
13.
Jpn J Radiol ; 41(11): 1255-1264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37219717

RESUMEN

PURPOSE: This study aimed to investigate the uptake characteristics of 18F-fluoromisonidazole (FMISO), in mutant-type isocitrate dehydrogenase (IDH-mutant, grade 3 and 4) and wild-type IDH (IDH-wildtype, grade 4) 2021 WHO classification adult-type diffuse gliomas. MATERIALS AND METHODS: Patients with grade 3 and 4 adult-type diffuse gliomas (n = 35) were included in this prospective study. After registering 18F-FMISO PET and MR images, standardized uptake value (SUV) and apparent diffusion coefficient (ADC) were evaluated in hyperintense areas on fluid-attenuated inversion recovery (FLAIR) imaging (HIA), and in contrast-enhanced tumors (CET) by manually placing 3D volumes of interest. Relative SUVmax (rSUVmax) and SUVmean (rSUVmean), 10th percentile of ADC (ADC10pct), mean ADC (ADCmean) were measured in HIA and CET, respectively. RESULTS: rSUVmean in HIA and rSUVmean in CET were significantly higher in IDH-wildtype than in IDH-mutant (P = 0.0496 and 0.03, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET, that of rSUVmax and ADC10pct in CET, that of rSUVmean in HIA and ADCmean in CET, were able to differentiate IDH-mutant from IDH-wildtype (AUC 0.80). When confined to astrocytic tumors except for oligodendroglioma, rSUVmax, rSUVmean in HIA and rSUVmean in CET were higher for IDH-wildtype than for IDH-mutant, but not significantly (P = 0.23, 0.13 and 0.14, respectively). The combination of FMISO rSUVmean in HIA and ADC10pct in CET was able to differentiate IDH-mutant (AUC 0.81). CONCLUSION: PET using 18F-FMISO and ADC might provide a valuable tool for differentiating between IDH mutation status of 2021 WHO classification grade 3 and 4 adult-type diffuse gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios Prospectivos , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Mutación , Organización Mundial de la Salud , Tomografía de Emisión de Positrones , Estudios Retrospectivos
14.
Artículo en Inglés | MEDLINE | ID: mdl-37157884

RESUMEN

PURPOSE: The purpose of this study was to evaluate the radiotherapy planning feasibility of dose escalation with intensity-modulated proton therapy (IMPT) to hypoxic tumor regions identified on 18F-Fluoromisonidazole (FMISO) positron emission tomography and computed tomography (PET-CT) in NPC. MATERIALS AND METHODS: Nine patients with stages T3-4N0-3M0 NPC underwent 18F-FMISO PET-CT before and during week 3 of radiotherapy. The hypoxic volume (GTVhypo) is automatically generated by applying a subthresholding algorithm within the gross tumor volume (GTV) with a tumor to muscle standardized uptake value (SUV) ratio of 1.3 on the 18F-FMISO PET-CT scan. Two proton plans were generated for each patient, a standard plan to 70 Gy and dose escalation plan with upfront boost followed by standard 70GyE plan. The stereotactic boost was planned with single-field uniform dose optimization using two fields to deliver 10 GyE in two fractions to GTVhypo. The standard plan was generated with IMPT with robust optimization to deliver 70GyE, 60GyE in 33 fractions using simultaneous integrated boost technique. A plan sum was generated for assessment. RESULTS: Eight of nine patients showed tumor hypoxia on the baseline 18F-FMISO PET-CT scan. The mean hypoxic tumor volume was 3.9 cm3 (range .9-11.9cm3 ). The average SUVmax of the hypoxic volume was 2.2 (range 1.44-2.98). All the dose-volume parameters met the planning objectives for target coverage. Dose escalation was not feasible in three of eight patients as the D0.03cc of temporal lobe was greater than 75GyE. CONCLUSIONS: The utility of boost to the hypoxic volume before standard course of radiotherapy with IMPT is dosimetrically feasible in selected patients. Clinical trials are warranted to determine the clinical outcomes of this approach.

15.
EJNMMI Radiopharm Chem ; 8(1): 5, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897480

RESUMEN

BACKGROUND: [18F]fluoromisonidazole ([18F]FMISO, 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole) is a commonly used radiotracer for imaging hypoxic conditions in cells. Since hypoxia is prevalent in solid tumors, [18F]FMISO is in clinical application for decades to explore oxygen demand in cancer cells and the resulting impact on radiotherapy and chemotherapy. RESULTS: Since the introduction of [18F]FMISO as positron emission tomography imaging agent in 1986, a variety of radiosynthesis procedures for the production of this hypoxia tracer has been developed. This paper gives a brief overview on [18F]FMISO radiosyntheses published so far from its introduction until now. From a radiopharmaceutical chemist's perspective, different precursors, radiolabeling approaches and purification methods are discussed as well as used automated radiosynthesizers, including cassette-based and microfluidic systems. CONCLUSION: In a GMP compliant radiosynthesis using original cassettes for FASTlab we produced [18F]FMISO in 49% radiochemical yield within 48 min with radiochemical purities > 99% and molar activities > 500 GBq/µmol. In addition, we report an easy and efficient radiosynthesis of [18F]FMISO, based on in-house prepared FASTlab cassettes, providing the radiotracer for research and preclinical purposes in good radiochemical yields (39%), high radiochemical purities (> 99%) and high molar activity (> 500 GBq/µmol) in a well-priced option.

16.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980806

RESUMEN

Intratumoral hypoxia is associated with a poor prognosis and poor response to treatment in head and neck cancers. Its identification would allow for increasing the radiation dose to hypoxic tumor subvolumes. 18F-FMISO PET imaging is the gold standard; however, quantitative multiparametric MRI could show the presence of intratumoral hypoxia. Thus, 16 patients were prospectively included and underwent 18F-FDG PET/CT, 18F-FMISO PET/CT, and multiparametric quantitative MRI (DCE, diffusion and relaxometry T1 and T2 techniques) in the same position before treatment. PET and MRI sub-volumes were segmented and classified as hypoxic or non-hypoxic volumes to compare quantitative MRI parameters between normoxic and hypoxic volumes. In total, 13 patients had hypoxic lesions. The Dice, Jaccard, and overlap fraction similarity indices were 0.43, 0.28, and 0.71, respectively, between the FDG PET and MRI-measured lesion volumes, showing that the FDG PET tumor volume is partially contained within the MRI tumor volume. The results showed significant differences in the parameters of SUV in FDG and FMISO PET between patients with and without measurable hypoxic lesions. The quantitative MRI parameters of ADC, T1 max mapping and T2 max mapping were different between hypoxic and normoxic subvolumes. Quantitative MRI, based on free water diffusion and T1 and T2 mapping, seems to be able to identify intra-tumoral hypoxic sub-volumes for additional radiotherapy doses.

17.
Front Med (Lausanne) ; 10: 1055062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844199

RESUMEN

Tumor hypoxia is a complex and evolving phenomenon both in time and space. Molecular imaging allows to approach these variations, but the tracers used have their own limitations. PET imaging has the disadvantage of low resolution and must take into account molecular biodistribution, but has the advantage of high targeting accuracy. The relationship between the signal in MRI imaging and oxygen is complex but hopefully it would lead to the detection of truly oxygen-depleted tissue. Different ways of imaging hypoxia are discussed in this review, with nuclear medicine tracers such as [18F]-FMISO, [18F]-FAZA, or [64Cu]-ATSM but also with MRI techniques such as perfusion imaging, diffusion MRI or oxygen-enhanced MRI. Hypoxia is a pejorative factor regarding aggressiveness, tumor dissemination and resistance to treatments. Therefore, having accurate tools is particularly important.

18.
Biomedicines ; 11(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672633

RESUMEN

Hypoxia is a common feature of the tumor microenvironment, including that of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with a high five-year mortality rate. Using [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) imaging, we aimed to monitor changes in response to immunotherapy (IMT) with chemotherapy in TNBC. TNBC-tumor-bearing mice received paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 and anti-cytotoxic T-lymphocyte 4. FMISO-PET imaging was performed on treatment days 0, 6, and 12. Max and mean standard uptake values (SUVmax and SUVmean, respectively), histological analyses, and flow cytometry results were compared. FMISO-PET imaging revealed differences in tumor biology between treatment groups prior to tumor volume changes. 4T1 responders showed SUVmean 1.6-fold lower (p = 0.02) and 1.8-fold lower (p = 0.02) than non-responders on days 6 and 12, respectively. E0771 responders showed SUVmean 3.6-fold lower (p = 0.001) and 2.7-fold lower (p = 0.03) than non-responders on days 6 and 12, respectively. Immunohistochemical analyses revealed IMT plus PTX decreased hypoxia and proliferation and increased vascularity compared to control. Combination IMT/PTX recovered the loss of CD4+ T-cells observed with single-agent therapies. PET imaging can provide timely, longitudinal data on the TNBC tumor microenvironment, specifically intratumoral hypoxia, predicting therapeutic response to IMT plus chemotherapy.

19.
NMR Biomed ; 36(3): e4858, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285719

RESUMEN

Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Tomografía de Emisión de Positrones , Accidente Cerebrovascular/diagnóstico por imagen , Misonidazol , Hipoxia/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiofármacos
20.
Cancer Chemother Pharmacol ; 91(2): 133-141, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565309

RESUMEN

The purpose of this study was to investigate the value of tumour-to-muscle (T/M) ratios and Patlak Ki images extracted from whole-body dynamic 18F-fluoromisonidazole (FMISO) PET/CT Patlak multi-parameter imaging for evaluating the early radiosensitizing effect of oleanolic acid (OA). Twenty-four rats with C6 gliomas were divided into 4 groups and treated with OA (group B), radiotherapy (group C), both (group D) or neither (group A). Whole-body dynamic 18F-FMISO PET/CT scans were performed for 120 min before treatment and 24 h following the treatment course. The tumour samples were dissected for hematoxylin and eosin staining, and HIF-1α, Ki-67 and GLUT-1 immunohistochemical staining. PET images were analysed using kinetic modelling (Patlak Ki) and static analysis (T/M ratios), and correlated with immunohistochemical results. The changes in T/M ratios, Ki values and tumour volume before treatment and 24 h following the treatment course were compared, and the survival time of tumour-bearing rats was recorded. Kaplan-Meier analysis showed that OA combined with radiotherapy can inhibit tumour growth and prolong the survival time of tumour-bearing rats. Whole-body dynamic 18F-FMISO PET/CT showed that the Ki values in group D were significantly lower than those in group C, whilst there was no significant difference in T/M ratios between groups C and D. The Pearson correlation coefficient analysis showed that Ki values were significantly related to immunohistochemical results. Our study suggests that Patlak Ki images may add value to PET/CT static images for evaluating the early radio-sensitizing effect of OA.


Asunto(s)
Glioma , Ácido Oleanólico , Fármacos Sensibilizantes a Radiaciones , Ratas , Animales , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Ácido Oleanólico/farmacología , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA