Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 445, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184622

RESUMEN

BACKGROUND: According to the Global Cancer Statistics in 2020, the incidence and mortality of colorectal cancer (CRC) rank third and second among all tumors. The disturbance of ubiquitination plays an important role in the initiation and development of CRC, but the ubiquitinome of CRC cells and the survival-relevant ubiquitination are poorly understood. METHODS: The ubiquitinome of CRC patients (n = 6) was characterized using our own data sets of proteomic and ubiquitin-proteomic examinations. Then, the probable survival-relevant ubiquitination was searched based on the analyses of data sets from public databases. RESULTS: For the ubiquitinomic examination, we identified 1690 quantifiable sites and 870 quantifiable proteins. We found that the highly-ubiquitinated proteins (n ≥ 10) were specifically involved in the biological processes such as G-protein coupling, glycoprotein coupling, and antigen presentation. Also, we depicted five motif sequences frequently recognized by ubiquitin. Subsequently, we revealed that the ubiquitination content of 1172 proteins were up-regulated and 1700 proteins were down-regulated in CRC cells versus normal adjacent cells. We demonstrated that the differentially ubiquitinated proteins were relevant to the pathways including metabolism, immune regulation, and telomere maintenance. Then, integrated with the proteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (n = 98), we revealed that the increased ubiquitination of FOCAD at Lys583 and Lys587 was potentially associated with patient survival. Finally, we depicted the mutation map of FOCAD and elucidated its potential functions on RNA localization and translation in CRC. CONCLUSIONS: The findings of this study described the ubiquitinome of CRC cells and identified abnormal ubiquitination(s) potentially affecting the patient survival, thereby offering new probable opportunities for clinical treatment.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ubiquitinadas , Neoplasias Colorrectales/patología , Humanos , Proteómica , ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
2.
Cells ; 10(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685504

RESUMEN

Triple negative breast cancer (TNBC) possesses poor prognosis mainly due to development of chemoresistance and lack of effective endocrine or targeted therapies. MiR-491-5p has been found to play a tumor suppressor role in many cancers including breast cancer. However, the precise role of miR-491-5p in TNBC has never been elucidated. In this study, we reported the novel tumor suppressor function of FOCAD/miR-491-5p in TNBC. High expression of miR-491-5p was found to be associated with better overall survival in breast cancer patients. We found that miR-491-5p could be an intronic microRNA processed form FOCAD gene. We are the first to demonstrate that both miR-491-5p and FOCAD function as tumor suppressors to inhibit cancer stemness, epithelial-mesenchymal transition, drug resistance, cell migration/invasion, and pulmonary metastasis etc. in TNBC. MiR-491-5p was first reported to directly target Rab interacting factor (RABIF) to downregulate RABIF-mediated TNBC cancer stemness, drug resistance, cell invasion, and pulmonary metastasis via matrix metalloproteinase (MMP) signaling. High expression of RABIF was found to be correlated with poor clinical outcomes of breast cancer and TNBC patients. Our data indicated that miR-491-5p and RABIF are potential prognostic biomarkers and targeting the novel FOCAD/miR-491-5p/RABIF/MMP signaling pathway could serve as a promising strategy in TNBC treatment.


Asunto(s)
Movimiento Celular/genética , Resistencia a Medicamentos/genética , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Genes Supresores de Tumor , Humanos , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Supresoras de Tumor/metabolismo
3.
Redox Biol ; 37: 101702, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32898818

RESUMEN

Transcription factor nuclear factor-erythroid 2-like 2 (NRF2) mainly regulates cellular antioxidant response, redox homeostasis and metabolic balance. Our previous study illustrated the translational significance of NRF2-mediated transcriptional repression, and the transcription of FOCAD gene might be negatively regulated by NRF2. However, the detailed mechanism and the related significance remain unclear. In this study, we mainly explored the effect of NRF2-FOCAD signaling pathway on ferroptosis regulation in human non-small-cell lung carcinoma (NSCLC) model. Our results confirmed the negative regulation relationship between NRF2 and FOCAD, which was dependent on NRF2-Replication Protein A1 (RPA1)-Antioxidant Response Elements (ARE) complex. In addition, FOCAD promoted the activity of focal adhesion kinase (FAK), which further enhanced the sensitivity of NSCLC cells to cysteine deprivation-induced ferroptosis via promoting the tricarboxylic acid (TCA) cycle and the activity of Complex I in mitochondrial electron transport chain (ETC). However, FOCAD didn't affect GPX4 inhibition-induced ferroptosis. Moreover, the treatment with the combination of NRF2 inhibitor (brusatol) and erastin showed better therapeutic action against NSCLC in vitro and in vivo than single treatment, and the improved therapeutic function partially depended on the activation of FOCAD-FAK signal. Taken together, our study indicates the close association of NRF2-FOCAD-FAK signaling pathway with cysteine deprivation-induced ferroptosis, and elucidates a novel insight into the ferroptosis-based therapeutic approach for the patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Cistina , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor
4.
Acta Neuropathol ; 139(1): 175-192, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31473790

RESUMEN

In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas Supresoras de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , División Celular/genética , Femenino , Fase G2/genética , Humanos , Masculino , Microtúbulos/genética , Persona de Mediana Edad , Eliminación de Secuencia , Adulto Joven
5.
Hum Mutat ; 40(11): 1910-1923, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31243857

RESUMEN

Technological advances have allowed the identification of new adenomatous and serrated polyposis genes, and of several candidate genes that require additional supporting evidence of causality. Through an exhaustive literature review and mutational screening of 177 unrelated polyposis patients, we assessed the involvement of MCM9, FOCAD, POLQ, and RNF43 in the predisposition to (nonserrated) colonic polyposis, as well as the prevalence of NTHL1 and MSH3 mutations among genetically unexplained polyposis patients. Our results, together with previously reported data and mutation frequency in controls, indicate that: MCM9 and POLQ mutations are not associated with polyposis; germline RNF43 mutations, with a prevalence of 1.5-2.5% among serrated polyposis patients, do not cause nonserrated polyposis; MSH3 biallelic mutations are highly infrequent among European polyposis patients, and the prevalence of NTHL1 biallelic mutations among unexplained polyposes is ~2%. Although nonsignificant, FOCAD predicted deleterious variants are overrepresented in polyposis patients compared to controls, warranting larger studies to provide definite evidence in favor or against their causal association with polyposis predisposition.


Asunto(s)
Poliposis Adenomatosa del Colon/epidemiología , Poliposis Adenomatosa del Colon/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Predisposición Genética a la Enfermedad , Proteína 3 Homóloga de MutS/genética , Mutación , Poliposis Adenomatosa del Colon/diagnóstico , Biomarcadores , ADN Polimerasa Dirigida por ADN/genética , Estudios de Asociación Genética , Humanos , Variantes Farmacogenómicas , Prevalencia , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , ADN Polimerasa theta
6.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L693-709, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637605

RESUMEN

Neutrophilic airway inflammation is one of the major hallmarks of chronic obstructive pulmonary disease and is also seen in steroid resistant asthma. Neutrophilic airway inflammation can be induced by different stimuli including cigarette smoke (CS). Short-term exposure to CS induces neutrophilic airway inflammation in both mice and humans. Since not all individuals develop extensive neutrophilic airway inflammation upon smoking, we hypothesized that this CS-induced innate inflammation has a genetic component. This hypothesis was addressed by exposing 30 different inbred mouse strains to CS or control air for 5 consecutive days, followed by analysis of neutrophilic lung inflammation. By genomewide haplotype association mapping, we identified four susceptibility genes with a significant association to lung tissue levels of the neutrophil marker myeloperoxidase under basal conditions and an additional five genes specifically associated with CS-induced tissue MPO levels. Analysis of the expression levels of the susceptibility genes by quantitative RT-PCR revealed that three of the four genes associated with CS-induced tissue MPO levels had CS-induced changes in gene expression levels that correlate with CS-induced airway inflammation. Most notably, CS exposure induces an increased expression of the coiled-coil domain containing gene, Ccdc93, in mouse strains susceptible for CS-induced airway inflammation whereas Ccdc93 expression was decreased upon CS exposure in nonsusceptible mouse strains. In conclusion, this study shows that CS-induced neutrophilic airway inflammation has a genetic component and that several genes contribute to the susceptibility for this response.


Asunto(s)
Trastornos Leucocíticos/congénito , Neumonía/genética , Fumar/efectos adversos , Animales , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Trastornos Leucocíticos/genética , Trastornos Leucocíticos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Peroxidasa/metabolismo , Neumonía/etiología , Polimorfismo de Nucleótido Simple
7.
J Pathol ; 236(2): 155-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25712196

RESUMEN

Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , Eliminación de Gen , Mutación de Línea Germinal/genética , Proteínas Supresoras de Tumor/genética , Poliposis Adenomatosa del Colon/metabolismo , Adulto , Estudios de Casos y Controles , Cromosomas Humanos Par 9/genética , Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN/genética , Células Epiteliales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Sistemas de Lectura Abierta/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA