Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1359025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633761

RESUMEN

Introduction: Lipodystrophies are a group of disorders characterized by selective and variable loss of adipose tissue, which can result in an increased risk of insulin resistance and its associated complications. Women with lipodystrophy often have a high frequency of polycystic ovary syndrome (PCOS) and may experience gynecological and obstetric complications. The objective of this study was to describe the gestational outcomes of patients with familial partial lipodystrophy type 2 (FPLD2) at a reference center with the aim of improving the understanding and management of pregnant women affected by this condition. Methods: This was a retrospective analysis of data obtained from questionnaires regarding past pregnancies and a review of medical records from the beginning of follow-up in outpatient clinics. Results: All women diagnosed with FPLD2 who had previously become pregnant were included in this study (n=8). The women in the study experienced pregnancies between the ages of 14 and 38 years, with an average of 1.75 children per woman. The pregnancies in question were either the result of successful conception within 12 months of attempting to conceive or unplanned pregnancies. During pregnancy, two women (25%) were diagnosed with gestational diabetes mellitus (GDM), one (12.5%) with gestational hypothyroidism, and one (12.5%) with preeclampsia. Among the 17 pregnancies, two miscarriages (11.8%) occurred, and five cases (29.4%) of macrosomia were observed. Four instances of premature birth and an equal number of neonatal hypoglycemia cases were recorded. The reported neonatal complications included an unspecified malformation, respiratory infection, and two neonatal deaths related to heart malformation and respiratory distress syndrome. Conclusion: Our data showed a high frequency of fetal complications in women with FPLD2. However, no instances of infertility or prolonged attempts to conceive have been reported, highlighting the significance of employing effective contraception strategies to plan pregnancies at optimal times for managing metabolic comorbidities.


Asunto(s)
Diabetes Gestacional , Lipodistrofia Parcial Familiar , Lipodistrofia , Recién Nacido , Niño , Embarazo , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Estudios Retrospectivos , Diabetes Gestacional/diagnóstico , Resultado del Embarazo
2.
Cells ; 12(22)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37998321

RESUMEN

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Asunto(s)
Lipodistrofia Parcial Familiar , Humanos , Adipocitos Marrones/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tejido Adiposo Pardo/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37231758

RESUMEN

BACKGROUND: Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere. AIMS: We report the case in order to have a further understanding of FPLD2 or type 2 KobberlingDunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease. CASE: A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 KobberlingDunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended. CONCLUSION: WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.

4.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899861

RESUMEN

Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Humanos , Femenino , Tejido Adiposo/metabolismo , Resistencia a la Insulina/genética , Extremidades/patología , Diabetes Mellitus Tipo 2/patología , Lamina Tipo A
5.
AACE Clin Case Rep ; 8(1): 11-14, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35097194

RESUMEN

BACKGROUND: Familial partial lipodystrophy type 2 (FPLD2) is a rare genetic condition characterized by partial lack of subcutaneous tissue and can predispose an individual to complications such as hypertriglyceridemia with pancreatitis, insulin resistance, and diabetes. This report describes a case of FPLD2 identified with judicious history and examination. CASE REPORT: This case describes a 32-year-old patient with recurrent pancreatitis who developed complications requiring multiple surgeries, fistulas, ostomy, and parenteral feeding. The diagnosis of FPLD2 was made after a thorough history, observation, and examination leading to genetic testing. With the underlying etiology and diagnosis being known, appropriate counseling, family testing, and medical follow-ups can be sought. DISCUSSION: Our patient's case highlights the values of judicious physical examination and thoughtful inquiry of medical and family histories in arriving at the diagnosis of FPLD2. A thorough physical examination most of the time is necessary to diagnose this condition as some of the traits associated with the lack of adiposity may be seen as desirable to the general public. CONCLUSION: It is important that physicians obtain a thorough history and physical examination that may help in the prompt diagnosis of rare diseases like FPLD2, with subsequent multidisciplinary care that includes endocrinology, hepatology, cardiology, and nutrition.

6.
J Clin Med ; 10(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916827

RESUMEN

Type 2 familial partial lipodystrophy, or Dunnigan disease, is a metabolic disorder characterized by abnormal subcutaneous adipose tissue distribution. This rare condition results from variants principally affecting exons 8 and 11 of the LMNA gene. In this study, five FPLD2-diagnosed patients carrying the c.1583C>T, p.(Thr528Met) variant in exon 9 of the LMNA gene and with obvious clinical heterogeneity were evaluated. Specific polymorphisms in LMNA and in PPARG were also detected. Exhaustive clinical course, physical examination, biochemical features and family history were recorded, along with the assessment of anthropometric features and body composition by dual-energy X-ray absorptiometry. Preadipocytes obtained from a T528M patient were treated with the classic adipose differentiation medium with pioglitazone. Various adipogenes were evaluated by real-time PCR, and immunofluorescence was used to study intracellular localization of emerin, lamin A and its precursors. As demonstrated with Oil red O staining, the preadipocytes of the T528M patient failed to differentiate, the expression of various adipogenic genes was reduced in the lipodystrophic patient and immunofluorescence studies showed an accumulation of farnesylated prelamin A in T528M cells. We conclude that the T528M variant in LMNA could lead to FPLD2, as the adipogenic machinery is compromised.

7.
J Clin Med ; 10(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803191

RESUMEN

Laminopathies are disorders caused by LMNA gene mutations, which selectively affect different tissues and organ systems, and present with heterogeneous clinical and pathological traits. The molecular mechanisms behind these clinical differences and tissue specificity have not been fully clarified. We herein examine the case of a patient carrying a heterozygous LMNA c.1634G>A (p.R545H) variant with a mild, transient myopathy, who was referred to our center for the suspicion of lipodystrophy. At physical examination, an abnormal distribution of subcutaneous fat was noticed, with fat accumulation in the anterior regions of the neck, resembling the fat distribution pattern of familial partial lipodystrophy type 2 (FPLD2). The R545H missense variant has been found at very low allelic frequency in public databases, and in silico analysis showed that this amino acid substitution is predicted to have a damaging role. Other patients carrying the heterozygous LMNA p.R545H allele have shown a marked clinical heterogeneity in terms of phenotypic body fat distribution and severity of organ system involvement. These findings indicate that the LMNA p.R545H heterozygous variant exhibits incomplete penetrance and highly variable expressivity. We hypothesized that additional genetic factors, epigenetic mechanisms, or environmental triggers might explain the variable expressivity of phenotypes among various patients.

8.
Cells ; 9(9)2020 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842478

RESUMEN

Laminopathies are rare and heterogeneous diseases affecting one to almost all tissues, as in Progeria, and sharing certain features such as metabolic disorders and a predisposition to atherosclerotic cardiovascular diseases. These two features are the main characteristics of the adipose tissue-specific laminopathy called familial partial lipodystrophy type 2 (FPLD2). The only gene that is involved in FPLD2 physiopathology is the LMNA gene, with at least 20 mutations that are considered pathogenic. LMNA encodes the type V intermediate filament lamin A/C, which is incorporated into the lamina meshwork lining the inner membrane of the nuclear envelope. Lamin A/C is involved in the regulation of cellular mechanical properties through the control of nuclear rigidity and deformability, gene modulation and chromatin organization. While recent studies have described new potential signaling pathways dependent on lamin A/C and associated with FPLD2 physiopathology, the whole picture of how the syndrome develops remains unknown. In this review, we summarize the signaling pathways involving lamin A/C that are associated with the progression of FPLD2. We also explore the links between alterations of the cellular mechanical properties and FPLD2 physiopathology. Finally, we introduce potential tools based on the exploration of cellular mechanical properties that could be redirected for FPLD2 diagnosis.


Asunto(s)
Adipocitos/metabolismo , Células Endoteliales/metabolismo , Lipodistrofia Parcial Familiar/fisiopatología , Humanos , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-30177912

RESUMEN

Background: Dunnigan-type familial partial lipodystrophy (FPLD2) is a rare autosomal dominant disease caused by heterozygous mutations in the LMNA gene that results in regional loss of subcutaneous adipose tissue with onset in puberty. However, a generalized lipodystrophy phenotype has also been associated with heterozygous mutations in this gene, demonstrating the noticeable phenotypic heterogeneity of this disease. Methods: We report and describe clinical and metabolic features of four patients from the same family with the p.R582C LMNA mutation, three homozygous and one in the heterozygous state that present with three distinct lipodystrophic phenotypes. Results: Case description: The proband was a 12-year-old girl who developed severe subcutaneous fat atrophy in limbs and abdomen followed by a remarkable dorsocervical fat accumulation in adulthood along with diabetes at age 23. The proband's sister was a phenotypically normal girl who developed hypertriglyceridemia at age 8, progressive features of partial lipodystrophy at age 11, and diabetes at age 22. The proband's mother was first examined at age 32, presenting diabetes and a severe generalized lipodystrophic phenotype; she developed kidney failure at age 41 and died due to diabetic complications. The proband's father was a 50-year-old man with abdominal fat concentration that was initially considered phenotypically normal. Massively parallel sequencing using a platform of genes related to genetic lipodystrophies, followed by Sanger sequencing, revealed the transversion c.1744C>T at exon 11 of the LMNA gene (p.R582C) in the homozygous (mother and daughters) and heterozygous (father) states. Conclusion: We documented three distinct phenotypes of the homozygous and heterozygous p. R582C LMNA mutation in the same kindred, illustrating that FPLD2 linked to mutations in this gene is a disease of great clinical heterogeneity, possibly due to associated environmental or genetic factors.

10.
Nucleus ; 9(1): 392-397, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131000

RESUMEN

Polycystic ovary syndrome (PCOS) is a common disorder with a high phenotypic variability. Frequently, it is associated with a mild to moderate insulin resistance (IR) caused by an interaction between polygenic diathesis and the environment. However, PCOS may be a complication of an underlying syndrome of severe IR such as insulin receptor autoantibodies, mutations in the insulin receptor or in the signalling pathway downstream from the insulin receptor or, most frequently, a defect in function or in the development of the subcutaneous adipose tissue. Such conditions are clinically characterized by lipodystrophy. Lipodystrophy in some cases is produced by a single-gene defect. In our experience, PCOS secondary to a missense mutation in the LMNA gene, known as familial partial lipodystrophy type 2 (FPLD2), is the most frequent form of PCOS secondary to severe IR due to genetically determined lipodystrophy. These forms should be identified as they benefit from tailored therapies.


Asunto(s)
Lipodistrofia Parcial Familiar , Síndrome del Ovario Poliquístico , Femenino , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patología , Lipodistrofia Parcial Familiar/terapia , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Síndrome del Ovario Poliquístico/terapia
11.
Front Cell Dev Biol ; 6: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057899

RESUMEN

At the nuclear periphery, the genome is anchored to A- and B-type nuclear lamins in the form of heterochromatic lamina-associated domains. A-type lamins also associate with chromatin in the nuclear interior, away from the peripheral nuclear lamina. This nucleoplasmic lamin A environment tends to be euchromatic, suggesting distinct roles of lamin A in the regulation of gene expression in peripheral and more central regions of the nucleus. The hot-spot lamin A R482W mutation causing familial partial lipodystrophy of Dunnigan-type (FPLD2), affects lamin A association with chromatin at the nuclear periphery and in the nuclear interior, and is associated with 3-dimensional (3D) rearrangements of chromatin. Here, we highlight features of nuclear lamin association with the genome at the nuclear periphery and in the nuclear interior. We address recent data showing a rewiring of such interactions in cells from FPLD2 patients, and in adipose progenitor and induced pluripotent stem cell models of FPLD2. We discuss associated epigenetic and genome conformation changes elicited by the lamin A R482W mutation at the gene level. The findings argue that the mutation adversely impacts both global and local genome architecture throughout the nucleus space. The results, together with emerging new computational modeling tools, mark the start of a new era in our understanding of the 3D genomics of laminopathies.

12.
Biochem Biophys Res Commun ; 495(1): 254-260, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29108996

RESUMEN

Lipodystrophies are disorders that directly affect lipid metabolism and storage. Familial partial lipodystrophy type 2 (FPLD2) is caused by an autosomal dominant mutation in the LMNA gene. FPLD2 is characterized by abnormal adipose tissue distribution. This leads to metabolic deficiencies, such as insulin-resistant diabetes mellitus and hypertriglyceridemia. Here we have derived iPSC lines from two individuals diagnosed with FPLD2, and differentiated these cells into adipocytes. Adipogenesis and certain adipocyte functions are impaired in FPLD2-adipocytes. Consistent with the lipodystrophic phenotype, FPLD2-adipocytes appear to accumulate markers of autophagy and catabolize triglycerides at higher levels than control adipocytes. These data are suggestive of a mechanism causing the lack of adipose tissue in FPLD2 patients.


Asunto(s)
Adipocitos/patología , Células Madre Pluripotentes Inducidas/patología , Lamina Tipo A/genética , Metabolismo de los Lípidos , Lipodistrofia Parcial Familiar/genética , Mutación Puntual , Adipocitos/metabolismo , Adipogénesis , Autofagia , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Resistencia a la Insulina , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patología , Triglicéridos/metabolismo
13.
Adipocyte ; 6(4): 259-276, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28872940

RESUMEN

Dysregulation of adipose tissue metabolism is associated with multiple metabolic disorders. One such disease, known as Dunnigan-type familial partial lipodystrophy (FPLD2) is characterized by defective fat metabolism and storage. FPLD2 is caused by a specific subset of mutations in the LMNA gene. The mechanisms by which LMNA mutations lead to the adipose specific FPLD2 phenotype have yet to be determined in detail. We used RNA-Seq analysis to assess the effects of wild-type (WT) and mutant (R482W) lamin A on the expression profile of differentiating 3T3-L1 mouse preadipocytes and identified Itm2a as a gene that was upregulated at 36 h post differentiation induction in these cells. In this study we identify Itm2a as a novel modulator of adipogenesis and show that endogenous Itm2a expression is transiently downregulated during induction of 3T3-L1 differentiation. Itm2a overexpression was seen to moderately inhibit differentiation of 3T3-L1 preadipocytes while shRNA mediated knockdown of Itm2a significantly enhanced 3T3-L1 differentiation. Investigation of PPARγ levels indicate that this enhanced adipogenesis is mediated through the stabilization of the PPARγ protein at specific time points during differentiation. Finally, we demonstrate that Itm2a knockdown is sufficient to rescue the inhibitory effects of lamin A WT and R482W mutant overexpression on 3T3-L1 differentiation. This suggests that targeting of Itm2a or its related pathways, including autophagy, may have potential as a therapy for FPLD2.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular/genética , Silenciador del Gen , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Células 3T3-L1 , Adipogénesis , Animales , Fibroblastos/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patología , Ratones , Regiones Promotoras Genéticas
14.
Cell Mol Gastroenterol Hepatol ; 4(3): 365-383, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28913408

RESUMEN

BACKGROUND & AIMS: Lamins are nuclear intermediate filament proteins that comprise the major components of the nuclear lamina. Mutations in LMNA, which encodes lamins A/C, cause laminopathies, including lipodystrophy, cardiomyopathy, and premature aging syndromes. However, the role of lamins in the liver is unknown, and it is unclear whether laminopathy-associated liver disease is caused by primary hepatocyte defects or systemic alterations. METHODS: To address these questions, we generated mice carrying a hepatocyte-specific deletion of Lmna (knockout [KO] mice) and characterized the KO liver and primary hepatocyte phenotypes by immunoblotting, immunohistochemistry, microarray analysis, quantitative real-time polymerase chain reaction, and Oil Red O and Picrosirius red staining. RESULTS: KO hepatocytes manifested abnormal nuclear morphology, and KO mice showed reduced body mass. KO mice developed spontaneous male-selective hepatosteatosis with increased susceptibility to high-fat diet-induced steatohepatitis and fibrosis. The hepatosteatosis was associated with up-regulated transcription of genes encoding lipid transporters, lipid biosynthetic enzymes, lipid droplet-associated proteins, and interferon-regulated genes. Hepatic Lmna deficiency led to enhanced signal transducer and activator of transcription 1 (Stat1) expression and blocked growth hormone-mediated Janus kinase 2 (Jak2), signal transducer and activator of transcription 5 (Stat5), and extracellular signal-regulated kinase (Erk) signaling. CONCLUSIONS: Lamin A/C acts cell-autonomously to maintain hepatocyte homeostasis and nuclear shape and buffers against male-selective steatohepatitis by positively regulating growth hormone signaling and negatively regulating Stat1 expression. Lamins are potential genetic modifiers for predisposition to steatohepatitis and liver fibrosis. The microarray data can be found in the Gene Expression Omnibus repository (accession number: GSE93643).

15.
Front Genet ; 8: 79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28663758

RESUMEN

Mutations in LMNA, encoding nuclear intermediate filament proteins lamins A and C, cause multiple diseases ('laminopathies') including muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy (FPLD2), insulin resistance syndrome and progeria. To assess the prevalence of LMNA missense mutations ('variants') in a broad, ethnically diverse population, we compared missense alleles found among 60,706 unrelated individuals in the ExAC cohort to those identified in 1,404 individuals in the laminopathy database (UMD-LMNA). We identified 169 variants in the ExAC cohort, of which 37 (∼22%) are disease-associated including p.I299V (allele frequency 0.0402%), p.G602S (allele frequency 0.0262%) and p.R644C (allele frequency 0.124%), suggesting certain LMNA mutations are more common than previously recognized. Independent analysis of LMNA variants via the type 2 diabetes (T2D) Knowledge Portal showed that variant p.G602S associated significantly with type 2 diabetes (p = 0.02; odds ratio = 4.58), and was more frequent in African Americans (allele frequency 0.297%). The FPLD2-associated variant I299V was most prevalent in Latinos (allele frequency 0.347%). The ExAC cohort also revealed 132 novel LMNA missense variants including p.K108E (limited to individuals with psychiatric disease; predicted to perturb coil-1B), p.R397C and p.R427C (predicted to perturb filament biogenesis), p.G638R and p.N660D (predicted to perturb prelamin A processing), and numerous Ig-fold variants predicted to perturb phenotypically characteristic protein-protein interactions. Overall, this two-pronged strategy- mining a large database for missense variants in a single gene (LMNA), coupled to knowledge about the structure, biogenesis and functions of A-type lamins- revealed an unexpected number of LMNA variants, including novel variants predicted to perturb lamin assembly or function. Interestingly, this study also correlated novel variant p.K108E with psychiatric disease, identified known variant p.I299V as a potential risk factor for metabolic disease in Latinos, linked variant p.G602 with type 2 diabetes, and identified p.G602S as a predictor of diabetes risk in African Americans.

16.
J Clin Lipidol ; 10(6): 1488-1491, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27919367

RESUMEN

We report the first described case of a heterozygous p.R545H (c.1634 G > A) missense mutation in the LMNA gene with clinical features compatible with Dunnigan-type 2 familial partial lipodystrophy (FPLD2). The case presented as metabolic syndrome to a specialist clinical service and highlights the overlap between FPLD2 and the metabolic syndrome. The associations with type 2 diabetes mellitus, fatty liver disease, polycystic ovarian syndrome, and hypertriglyceridemia are highlighted. The importance of evaluating patients for these associated conditions is discussed, and the potential mechanisms of disease are briefly outlined. The mutation has been previously reported in a heart failure database without a clinical description. The links between heart failure and the clinical condition are briefly considered.


Asunto(s)
Lipodistrofia Parcial Familiar/diagnóstico , Síndrome Metabólico/diagnóstico , Alanina Transaminasa/sangre , HDL-Colesterol/sangre , Femenino , Heterocigoto , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Persona de Mediana Edad , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA