Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
1.
Reprod Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995602

RESUMEN

In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.

2.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054902

RESUMEN

Our meta-analysis, encompassing 30 studies with 46,976 subjects, aimed to explore the impact of fat mass and obesity-associated protein (FTO) genotypes on weight response to exercise and dietary interventions in overweight and obese adults. Electronic databases including PubMed and Google Scholar were searched from 2020 to September 2023 to identify relevant studies. Results revealed a significant reduction in body weight among individuals with the FTO risk allele following exercise and diet interventions (standardized mean difference [SMD] = - 0.619, 95% CI: - 1.137, - 0.100; p = .01). When examining FTO variants, both AA (SMD = - 0.148, 95% CI: - 0.282, - 0.014, p = .03, I2 = 24.96) and TA genotypes (SMD = - 0.674, 95% CI: - 1.162, - 0.186, p = .007, I2 = 91.12) showed significant weight reduction compared to the TT genotype. Moreover, individuals with the high-risk genotype AA + TT achieved greater weight loss compared to those with the normal-risk genotype TT (SMD = - 0.419, 95% CI: - 0.655, -0.183, p = .0001, I2 = 92.08) in the dominant genetic model. Subgroup analysis indicated that FTO risk allele carriers (AA + AT) with exercise interventions lasting six months and a body mass index of 25 - 29 experienced greater weight loss compared to TT carriers. These findings emphasize the importance of genetic considerations in weight management interventions and suggest personalized approaches for combating obesity. Further clinical trials are warranted to validate our study's findings.

3.
Eur J Neurosci ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007275

RESUMEN

N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark that regulates the fate of RNA molecules. Recent studies have revealed a bidirectional interaction between m6A modification and the circadian clock. However, the precise temporal dynamics of m6A global enrichment in the central circadian pacemaker have not been fully elucidated. Our study investigates the relationship between FTO demethylase and molecular clocks in primary cells of the suprachiasmatic nucleus (SCN). In addition, we examined the effects of lipopolysaccharide (LPS) on Fto expression and the role of FTO in LPS-induced reactive oxygen species (ROS) production in primary SCN cell culture. We observed circadian rhythmicity in the global m6A levels, which mirrored the rhythmic expression of the Fto demethylase. Silencing FTO using siRNA reduced the mesor of Per2 rhythmicity in SCN primary cells and extended the period of the PER2 rhythm in SCN primary cell cultures from PER2::LUC mice. When examining the immune response, we discovered that exposure to LPS upregulated global m6A levels while downregulating Fto expression in SCN primary cell cultures. Interestingly, we found a loss of circadian rhythmicity in Fto expression following LPS treatment, indicating that the decrease of FTO levels may contribute to m6A upregulation without directly regulating its circadian rhythm. To explore potential protective mechanisms against neurotoxic inflammation, we examined ROS production following LPS treatment in SCN primary cell cultures pretreated with FTO siRNA. We observed a time-dependent pattern of ROS induction, with significant peak at 32 h but not at 20 h after synchronization. Silencing the FTO demethylase abolished ROS induction following LPS exposure, supporting the hypothesis that FTO downregulation serves as a protective mechanism during LPS-induced neuroinflammation in SCN primary cell cultures.

4.
Environ Sci Pollut Res Int ; 31(32): 45295-45309, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963623

RESUMEN

Manganese oxide is a potential agent in the field of energy storage owing to its changeable redox characteristics, high theoretical specific capacitance and valence shells for charge transfer. On the other hand, due to huge surface area, affordability, customisable composition, layered structure and high theoretical specific capacitance, layered double hydroxides, or LDHs, have drawn a lot of interest. This study employs a three-electrode setup to investigate the supercapacitive performance of λ-manganese dioxide/Cu-Al LDH composite at different compositional ratios. To enhance the adhesive and conductivity capabilities, 10% of CNT additive and PVDF binder are added for the composites. Out of all the composites, the one with the greatest weight percentage of λ-manganese dioxide shows the best electrode performance with a superior specific capacitance of 164 F/g at a scan rate of 10 mV/s. Additionally, using a symmetrical two-electrode setup, the best-performing electrode is examined. The result shows an exceptional potential window of 2.7 V in a basic electrolyte, a power density of 4.04 kW/kg at 3 A/g, an energy density of 20.32 Wh/kg at 1 A/g, and a specific capacitance of 37 F/g.


Asunto(s)
Cobre , Capacidad Eléctrica , Electrodos , Hidróxidos , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Compuestos de Manganeso/química , Óxidos/química , Hidróxidos/química , Cobre/química , Aluminio/química
5.
Environ Pollut ; 359: 124531, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996995

RESUMEN

Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167341, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025373

RESUMEN

Fibroblast-like synoviocytes (FLS) plays an important role in synovial inflammation and joint damage in rheumatoid arthritis (RA). As the most abundant mRNA modification, N6-methyladenosine (m6A) is involved in the development of various diseases; however, its role in RA remains to be defined. In this study, we reported the elevated expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in FLS and synovium from RA patients. Functionally, FTO knockdown or treatment with FB23-2, an inhibitor of the mRNA m6A demethylase FTO, inhibited the migration, invasion and inflammatory response of RA FLS, however, FTO-overexpressed RA FLS exhibited increased migration, invasion and inflammatory response. We further demonstrated that FTO promoted ADAMTS15 mRNA stability in an m6A-IGF2BP1 dependent manner. Notably, the severity of arthritis was significantly reduced in CIA mice with FB23-2 administration or CIA rats with intra-articular injection of FTO shRNA. Our results illustrate the contribution of FTO-mediated m6A modification to joint damage and inflammation in RA and suggest that FTO might be a potential therapeutic target in RA.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167354, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004378

RESUMEN

Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.

8.
Immun Inflamm Dis ; 12(7): e1345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023405

RESUMEN

BACKGROUND: Neuropathic pain (NP) is a challenging health condition owing to its complex nature and associated multiple etiologies. The occurrence of NP involves the abnormal activity of neurons mediated by oxidative stress (OS). Previous research has demonstrated that m6A methylation plays a role in the regulatory pathway of NP. This study aimed to investigate the specific molecular pathways through which m6A methylation modifiers alleviate NP. METHODS: For this purpose, an NO rat model was developed via spared nerve injury (SNI), followed by quantifying the animal's pain assessment via paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The OS in SNI rats was evaluated by measuring reactive oxygen species, superoxide dismutase, and catalase (CAT) in spinal cord tissues. Moreover, quantitative-real-time polymerase chain reaction and western blot analysis were employed for detecting fat mass and obesity-associated (FTO) and GPR177 levels, while m6A levels of GPR117 were analyzed via MeRIP. RESULTS: The results indicated an enhanced OS with highly expressed FTO in spinal cord tissue samples, where knocking down Fto effectively relieved NP and OS in SNI rats. Mechanistic investigations revealed that Fto-mediated reduction of Grp177 m6A modification was involved in the WNT5a/TRPV1 axis-mediated OS remission of NP. Moreover, in vitro experiment results indicated that YTHDF2 was an important m6A methylated reading protein for this process. CONCLUSIONS: Fto silencing leads to increased m6A methylation of Grp177 through a YTHDF2-dependent mechanism, resulting in decreased Grp177 stability and ultimately reducing NP in rats by OS suppression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Neuralgia , Estrés Oxidativo , Receptores Acoplados a Proteínas G , Animales , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/etiología , Ratas , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Silenciador del Gen , Metilación , Adenosina/metabolismo , Adenosina/análogos & derivados , Médula Espinal/metabolismo , Médula Espinal/patología
9.
ChemSusChem ; : e202400939, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034762

RESUMEN

Fluorine-doped tin oxide (FTO) substrate is an important and expensive component in perovskite solar cells (PSCs), which accounts for up to 40% of a typical PSC raw material cost. In this study, we investigated the recyclability of SnO2/FTO in PSCs by washing the spent PSCs using different solvent such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone, water, and acetone/water mixture. Characterisation of properties of the SnO2/FTO substrates recovered from the PSC show the surface wettability of SnO2/FTO is largely unchanged with water washing while a higher hydrophobicity is obtained with organic solvent washing. Comparison of electronic properties of the SnO2/FTO substrate shows a downward shift of the conduction band by 180 meV with water washing, creating favourable energy alignment with adjacent perovskite for efficient interfacial charge injection. Consequently, PSCs using the water-based recycled SnO2/FTO substrates produced a high power conversion efficiency (PCE) of 19.33% which is comparable to the device using fresh SnO2/FTO substrate (PCE = 19.85%). Furthermore, we demonstrated that the water washing process could retain property of SnO2/FTO substrate for decent PSC performance up to four recycling cycles. This study opens new avenues towards recycling of valuable FTO substrates in PSCs for increased sustainability and cost-effectiveness.

10.
Cureus ; 16(6): e62851, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39040764

RESUMEN

Background Fat mass and obesity-associated (FTO) protein is an mRNA demethylase enzyme essential for active genome regulation. The FTO gene codes for a protein that is part of the methylosome complex and has a regulatory role in cancer development. Some studies have shown a relationship between FTO and cancer, where single nucleotide polymorphisms (SNPs) may have some impact on cancer risk. The present study aimed to evaluate the risk of FTO polymorphisms rs9939609, rs1477196, and rs9930506; analyze the methylation status of FTO promoters among Mexican women with breast cancer (BC); and investigate by in silico analysis the methylation status in the region near these polymorphisms. Methods A total of 157 BC patients and 137 healthy controls were genotyped for rs9939609, rs1477196, and rs9930506 FTO polymorphisms by TaqMan SNP Genotyping Assays. Promoter methylation was analyzed by sodium bisulfite and methylation-specific polymerase chain reaction (MSP) for 78 tissue samples. An in silico analysis using The Cancer Genome Atlas Program (TCGA) database was employed to investigate the methylation state in promoter and near polymorphism locations and its relation to survival. Results The AG genotype of FTO rs9930506 was associated with BC protection (P= 0.0025; adjusted OR, 0.27; 95% CI: 0.10-0.70). rs9939609 and rs1477196, according to the results of the present study, had no relation to BC. Promoter methylation status assays by MSP revealed no changes in methylation in BC or healthy tissues. Trying to know more about the methylation in promoters and near polymorphisms' relation to survival, we performed an in silico analysis. Bioinformatics analysis showed a correlation between poor survival and methylation near polymorphisms but not with methylation in the promoter region. Conclusions The AG genotype rs9930506 has a protective function against BC. Whereas high methylation near polymorphisms was related to lower survival, the hypomethylated promoter region does not impact survival.

11.
Biochem Pharmacol ; 226: 116375, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906227

RESUMEN

Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor ErbB-3 , Tubulina (Proteína) , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Humanos , Animales , Ratones , Tubulina (Proteína)/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inhibidores , Línea Celular Tumoral , Ratones Desnudos , Masculino , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/efectos de los fármacos
12.
Nutrients ; 16(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38892547

RESUMEN

BACKGROUND: Variants in fat mass and the obesity-associated protein (FTO) gene have long been recognized as the most significant genetic predictors of body fat mass and obesity. Nevertheless, despite the overall evidence, there are conflicting reports regarding the correlation between different polymorphisms of the FTO gene and body mass index (BMI). Additionally, it is unclear whether FTO influences metabolic syndrome (MetS) through mechanisms other than BMI's impact. In this work, we aimed to analyze the impact of the following FTO polymorphisms on the BMI as well as MetS components in a population of young adult men. METHODS: The patient group consisted of 279 Polish young adult men aged 28.92 (4.28) recruited for the MAGNETIC trial. The single-nucleotide polymorphisms (SNPs), located in the first intron of the FTO gene, were genotyped, and the results were used to identify "protective" and "risk" haplotypes and diplotypes based on the literature data. Laboratory, as well as anthropometric measurements regarding MetS, were performed. Measured MetS components included those used in the definition in accordance with the current guidelines. Data regarding dietary patterns were also collected, and principal components of the dietary patterns were identified. RESULTS: No statistically significant correlations were identified between the analyzed FTO diplotypes and BMI (p = 0.53) or other MetS components (waist circumference p = 0.55; triglycerides p = 0.72; HDL cholesterol p = 0.33; blood glucose p = 0.20; systolic blood pressure p = 0.06; diastolic blood pressure p = 0.21). Stratification by the level of physical activity or adherence to the dietary patterns also did not result in any statistically significant result. CONCLUSIONS: Some studies have shown that FTO SNPs such as rs1421085, rs1121980, rs8050136, rs9939609, and rs9930506 have an impact on the BMI or other MetS components; nevertheless, this was not replicated in this study of Polish young adult males.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Índice de Masa Corporal , Haplotipos , Estilo de Vida , Síndrome Metabólico , Polimorfismo de Nucleótido Simple , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/epidemiología , Adulto , Polonia , Adulto Joven , Dieta , Predisposición Genética a la Enfermedad , Conducta Alimentaria , Patrones Dietéticos
13.
J Hazard Mater ; 476: 134969, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38908185

RESUMEN

Manganese (Mn) induced learning and memory deficits through mechanisms that are not fully understood. In this study, we discovered that the demethylase FTO was significantly downregulated in hippocampal neurons in an experimental a mouse model of Mn exposure. This decreased expression of FTO was associated with Mn-induced learning and memory impairments, as well as the dysfunction in synaptic plasticity and damage to regional neurons. The overexpression of FTO, or its positive modulation with agonists, provides protection against neurological damage and cognitive impairments. Mechanistically, FTO interacts synergistically with the reader YTHDF3 to facilitate the degradation of GRIN1 and GRIN3B through the m6A modification pathway. Additionally, Mn decreases the phosphorylation of SOX2, which specifically impairs the transcriptional regulation of FTO activity. Additionally, we found that the natural compounds artemisinin and apigenin that can bind molecularly with SOX2 and reduce Mn-induced cognitive dysfunction in mice. Our findings suggest that the SOX2-FTO-Grins axis represents a viable target for addressing Mn-induced neurotoxicity and cognitive impairments.

14.
Sci Rep ; 14(1): 14262, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902309

RESUMEN

The surface micromorphology and roughening of the thermal evaporation-coated FTO/ZnS bilayer thin films annealed at 300, 400, 500, and 550 ∘ C for 1 h have been studied. AFM images of the prepared samples were analysed by the MountainsMap software, and the effects of the annealing temperature on the surface texture of the FTO/ZnS thin film's surface were investigated. Stereometric and advanced fractal analyses showed that the sample annealed at 500 ∘ C exhibited greater surface roughness and greater skewness and kurtosis. This film also has the most isotropic surface and exhibits the highest degree of heterogeneity. Also, despite the decrease in surface roughness with increasing temperature from 500 to 550 ∘ C , the fractal dimension tends to increase. The static water contact angle measurements indicate that the film annealed at 500 ∘ C exhibits higher hydrophobicity, which can be attributed to its greater topographic roughness. Our research indicates that the surface morphology of FTO/ZnS bilayer thin films is influenced by the annealing temperature. Changing factors such as roughness, fractality, and wettability parameters to help improve surface performance make the FTO/ZnS bilayer suitable for application in electronic and solar systems.

15.
J Nanobiotechnology ; 22(1): 367, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918838

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exs, H-Exs) have exhibited protective effects on ovarian function with unclear mechanisms. METHODS: A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify POI-associated circRNAs and miRNAs. The relationship between HucMSC-derived exosomal circBRCA1/miR-642a-5p/FOXO1 axis and POI was examined by RT-qPCR, Western blotting, reactive oxygen species (ROS) staining, senescence-associated ß-gal (SA-ß-gal) staining, JC-1 staining, TEM, oxygen consumption rate (OCR) measurements and ATP assay in vivo and in vitro. RT-qPCR detected the expression of circBRCA1 in GCs and serum of patients with normal ovarian reserve function (n = 50) and patients with POI (n = 50); then, the correlation of circBRCA1 with ovarian reserve function indexes was analyzed. RESULTS: Herein, we found that circBRCA1 was decreased in the serum and ovarian granulosa cells (GCs) of patients with POI and was associated with decreased ovarian reserve. H-Exs improved the disorder of the estrous cycles and reproductive hormone levels, reduced the number of atretic follicles, and alleviated the apoptosis and senescence of GCs in rats with POI. Moreover, H-Exs mitigated mitochondrial damage and reversed the reduced circBRCA1 expression induced by oxidative stress in GCs. Mechanistically, FTO served as an eraser to increase the stability and expression of circBRCA1 by mediating the m6A demethylation of circBRCA1, and exosomal circBRCA1 sponged miR-642a-5p to block its interaction with FOXO1. CircBRCA1 insufficiency aggravated mitochondrial dysfunction, mimicking FTO or FOXO1 depletion effects, which was counteracted by miR-642a-5p inhibition. CONCLUSION: H-Exs secreted circBRCA1 regulated by m6A modification, directly sponged miR-642a-5p to upregulate FOXO1, resisted oxidative stress injuries in GCs and protected ovarian function in rats with POI. Exosomal circBRCA1 supplementation may be a general prospect for the prevention and treatment of POI.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Exosomas , Células de la Granulosa , MicroARNs , Estrés Oxidativo , Insuficiencia Ovárica Primaria , ARN Circular , Femenino , Células de la Granulosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Ratas , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ratas Sprague-Dawley , Células Madre Mesenquimatosas/metabolismo , Adulto
16.
Cell Rep ; 43(6): 114369, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878288

RESUMEN

Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs), and provides functional information to receiving cells. Mechanistically, the intracellular functional impairment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miRNAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell communication. This highlights that a further level of complexity should be considered when relating cellular dynamics to specific miRNAs.


Asunto(s)
Adenosina , Proteínas Argonautas , Comunicación Celular , Vesículas Extracelulares , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HEK293 , Animales
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167307, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897256

RESUMEN

Sepsis is a global health challenge that results in systemic inflammation, oxidative stress, and multi-organ dysfunction, with the heart being particularly susceptible. This study aimed to elucidate the effect of FTO, a key regulator in m6A methylation in septic cardiomyopathy, and its potential therapeutic implications. Cellular and animal models of septic myocardial injury were established. Moreover, it was revealed that ferroptosis, which is a form of programmed necrosis occurring with iron dependence, was activated within cardiomyocytes during septic conditions. The overexpression of FTO-suppressed ferroptosis alleviated heart inflammation and dysfunction and improved survival rates in vivo. However, the protective effects of FTO were attenuated by the overexpression of BACH1, which is a molecule negatively correlated with FTO. Mechanistically, FTO modulated the m6A modification of BACH1, suggesting a complex interplay in the regulation of cardiomyocyte damage and sepsis. Our findings reveal the potential of targeting the FTO/BACH1 axis and ferroptosis inhibitors as therapeutic strategies for sepsis-induced cardiac injuries.

18.
Autophagy ; : 1-18, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910554

RESUMEN

Excessive macroautophagy/autophagy leads to pancreatic ß-cell failure that contributes to the development of diabetes. Our previous study proved that the occurrence of deleterious hyperactive autophagy attributes to glucolipotoxicity-induced NR3C1 activation. Here, we explored the potential protective effects of (-)-epigallocatechin 3-gallate (EGCG) on ß-cell-specific NR3C1 overexpression mice in vivo and NR3C1-enhanced ß cells in vitro. We showed that EGCG protects pancreatic ß cells against NR3C1 enhancement-induced failure through inhibiting excessive autophagy. RNA demethylase FTO (FTO alpha-ketoglutarate dependent dioxygenase) caused diminished m6A modifications on mRNAs of three pro-oxidant genes (Tlr4, Rela, Src) and, hence, oxidative stress occurs; by contrast, EGCG promotes FTO degradation by the ubiquitin-proteasome system in NR3C1-enhanced ß cells, which alleviates oxidative stress, and thereby prevents excessive autophagy. Moreover, FTO overexpression abolishes the beneficial effects of EGCG on ß cells against NR3C1 enhancement-induced damage. Collectively, our results demonstrate that EGCG protects pancreatic ß cells against NR3C1 enhancement-induced excessive autophagy through suppressing FTO-stimulated oxidative stress, which provides novel insights into the mechanisms for the anti-diabetic effect of EGCG.Abbreviation 3-MA: 3-methyladenine; AAV: adeno-associated virus; Ad: adenovirus; ALD: aldosterone; AUC: area under curve; ßNR3C1 mice: pancreatic ß-cell-specific NR3C1 overexpression mice; Ctrl: control; CHX: cycloheximide; DEX: dexamethasone; DHE: dihydroethidium; EGCG: (-)-epigallocatechin 3-gallate; FTO: FTO alpha-ketoglutarate dependent dioxygenase; GSIS: glucose-stimulated insulin secretion; HFD: high-fat diet; HG: high glucose; i.p.: intraperitoneal; IOD: immunofluorescence optical density; KSIS: potassium-stimulated insulin secretion; m6A: N6-methyladenosine; MeRIP-seq: methylated RNA immunoprecipitation sequencing; NO: nitric oxide; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NR3C1-Enhc.: NR3C1-enhancement; NAC: N-acetylcysteine; NC: negative control; PBS: phosphate-buffered saline; PI: propidium iodide; OCR: oxygen consumption rate; Palm.: palmitate; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RNA-seq: RNA sequencing; O2.-: superoxide anion; SRC: Rous sarcoma oncogene; ROS: reactive oxygen species; T2D: type 2 diabetes; TEM: transmission electron microscopy; TLR4: toll-like receptor 4; TUNEL: terminal dUTP nick-end labeling; UTR: untranslated region; WT: wild-type.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38879772

RESUMEN

AIMS: This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-ß was studied in GC. METHODS: The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). TIMER2, TNM plot, and GEPIA database were used to analyze FTO expression. The associations of FTO with prognosis and clinicopathologic features were assessed using the Kaplan-Meier plotter and UALCAN database, respectively. The R software was employed to analyze its related signaling pathways and the associations with TME, immune cell infiltration, and immune checkpoint genes. GEPIA and ENCORI were used to examine the association of FTO with TGF-ß expression. The SRAMP website was utilized to predict m6A modification of TGF-ß. IHC, Western blot, and qPCR were used to analyze the expression levels of FTO and TGF-ß in clinical gastric cancer tissue samples or gastric cancer cell lines. In addition, a m6A RNA methylation assay kit was used to determine m6A levels in gastric cancer cells. RESULTS: FTO mRNA and protein levels were significantly elevated in GC compared to normal gastric tissues. Kaplan-Meier survival analysis suggested that upregulated FTO was associated with a worse prognosis in GC. Upregulated FTO was markedly correlated with differentiation degree, lymph node metastasis, and clinical TNM stage. GO and KEGG pathway analyses revealed that FTO-associated molecules were enriched in neuroactive ligand-receptor interaction, calcium signaling, PI3k-Akt signaling, cAMP signaling pathways, and TGF-ß signaling pathways, among others. The TME score was remarkably higher in the high-FTO group than in the low-FTO group. Furthermore, FTO expression had positive correlations with different types of immune cells and immune checkpoint genes. Moreover, FTO may regulate TGF-ß in an m6A RNA modification manner in GC. CONCLUSION: FTO may become an independent predictive prognostic biomarker correlating with TME, immune cell infiltration, and immune checkpoint genes in gastric cancer and might influence GC progression by regulating TGF-ß expression.

20.
Anal Bioanal Chem ; 416(16): 3775-3783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702449

RESUMEN

Oblique incidence reflectance difference (OIRD) is an emerging technique enabling real-time and label-free detection of bio-affinity binding events on microarrays. The interfacial architecture of the microarray chip is critical to the performance of OIRD detection. In this work, a sensitive label-free OIRD microarray chip was developed by using gold nanoparticle-decorated fluorine-doped tin oxide (AuNPs-FTO) slides as a chip substrate. This AuNPs-FTO chip demonstrates a higher signal-to-noise ratio and improved sensitivity compared to that built on FTO glass, showing a detection limit of as low as 10 ng mL-1 for the model target, HRP-conjugated streptavidin. On-chip ELISA experiments and optical calculations suggest that the enhanced performance is not only due to the higher probe density enabling a high capture efficiency toward the target, but most importantly, the AuNP layer arouses optical interference to improve the intrinsic sensitivity of OIRD. This work provides an effective strategy for constructing OIRD-based microarray chips with enhanced sensitivity, and may help extend their practical applications in various fields.


Asunto(s)
Flúor , Oro , Límite de Detección , Nanopartículas del Metal , Compuestos de Estaño , Compuestos de Estaño/química , Oro/química , Nanopartículas del Metal/química , Flúor/química , Análisis por Micromatrices/métodos , Ensayo de Inmunoadsorción Enzimática/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA