Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Electrochim Acta ; 231: 115-124, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28413228

RESUMEN

The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in "clean" environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 µWcm-2, followed by Co-AAPyr with 196 ± 1.5 µWcm-2, Ni-AAPyr with 171 ± 3.6 µWcm-2, Mn-AAPyr with 160 ± 2.8 µWcm-2 and AC 129 ± 4.2 µWcm-2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm-1 to 63.1 mScm-1. A maximum power density of 482 ± 5 µWcm-2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.

2.
Appl Energy ; 208: 25-36, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29302130

RESUMEN

In this work, the electrodes of a microbial desalination cell (MDC) are investigated as the positive and negative electrodes of an internal supercapacitor. The resulting system has been named a supercapacitive microbial desalination cell (SC-MDC). The electrodes are self-polarized by the red-ox reactions and therefore the anode acts as a negative electrode and the cathode as a positive electrode of the internal supercapacitor. In order to overcome cathodic losses, an additional capacitive electrode (AdE) was added and short-circuited with the SC-MDC cathode (SC-MDC-AdE). A total of 7600 discharge/self-recharge cycles (equivalent to 44 h of operation) of SC-MDC-AdE with a desalination chamber filled with an aqueous solution of 30 g L-1 NaCl are reported. The same reactor system was operated with real seawater collected from Pacific Ocean for 88 h (15,100 cycles). Maximum power generated was 1.63 ±â€¯0.04 W m-2 for SC-MDC and 3.01 ±â€¯0.01 W m-2 for SC-MDC-AdE. Solution conductivity in the desalination reactor decreased by ∼50% after 23 h and by more than 60% after 44 h. There was no observable change in the pH during cell operation. Power/current pulses were generated without an external power supply.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA