Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Environ Res ; 263(Pt 2): 120108, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369781

RESUMEN

In this research, typical industrial scenarios were analyzed optimized by machine learning algorithms, which fills the gap of massive data and industrial requirements in ultrasonic sludge treatment. Principal component analysis showed that the ultrasonic density and ultrasonic time were positively correlated with soluble chemical oxygen demand (SCOD), total nitrogen (TN), and total phosphorus (TP). Within five machine learning models, the best model for SCOD prediction was XG-boost (R2 = 0.855), while RF was the best for TN and TP (R2 = 0.974 and 0.957, respectively). In addition, SHAP indicated that the importance feature for SCOD, TN, and TP was ultrasonic time, and sludge concentration, respectively. Finally, the typical industrial scenario of ultrasonic pretreatment of sludge was analyzed. In the secondary sludge, treatment volume at 0.6 L, the pH at 7.0, and the ultrasonic time at 20 min was best to improve the SCOD. In the ultrasonic pretreatment primary sludge, treatment volume of 0.3 L, pH of 7.0, and ultrasonic time of 15 min was best to improve the SCOD. Furthermore, the ultrasonic power at 700 W and ultrasonic time at 20 min were best to improve the C/N and C/P in the secondary sludge. In the primary sludge, the ultrasonic power at 600 W, and the ultrasonic time at 15 min were best to improve C/N and C/P. This study lays a foundation for the practical application of ultrasonic pretreatment of sludge and provides basic information for typical industrial scenarios.

2.
J Hazard Mater ; 480: 135961, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341190

RESUMEN

Accurate health risk prediction (HRP) is an effective means of reducing the hazards of heavy metal (HM) exposure. It can address the drawbacks of lag and passivity faced by health risk assessment. This study innovatively proposed an HRP method, MEL-HR, based on multilevel ensemble learning (MEL) technology and environment compatibility. We conducted point and interval prediction experiments on health risks using 490 sets of data covering 17 environment factors. The point prediction results indicated that when the model predicts HI and TCR, the R2 values were 0.707 and 0.619, respectively. For P5, P50, and P95 in interval prediction, the R2 values of the model were 0.706, 0.703, and 0.672 for HI, and that for TCR were 0.620, 0.607, and 0.616, respectively. The analysis of feature importance indicated that, in addition to HM factors, longitude, mining area coefficient, and soil organic matter were key environmental factors affecting the MEL-HR model. Comparative experiments showed that compared to soil HMs-based MEL-HR, environment compatibility-based MEL-HR has improved the accuracy for HI and TCR by 19.83 % and 40.36 % for the point prediction and 22.06 % and 40.01 % for interval prediction. This study can provide technical support for targeted and resilient prevention and control of health risks.

3.
Sensors (Basel) ; 24(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39338798

RESUMEN

Multimodal fusion networks play a pivotal role in leveraging diverse sources of information for enhanced machine learning applications in aerial imagery. However, current approaches often suffer from a bias towards certain modalities, diminishing the potential benefits of multimodal data. This paper addresses this issue by proposing a novel modality utilization-based training method for multimodal fusion networks. The method aims to guide the network's utilization on its input modalities, ensuring a balanced integration of complementary information streams, effectively mitigating the overutilization of dominant modalities. The method is validated on multimodal aerial imagery classification and image segmentation tasks, effectively maintaining modality utilization within ±10% of the user-defined target utilization and demonstrating the versatility and efficacy of the proposed method across various applications. Furthermore, the study explores the robustness of the fusion networks against noise in input modalities, a crucial aspect in real-world scenarios. The method showcases better noise robustness by maintaining performance amidst environmental changes affecting different aerial imagery sensing modalities. The network trained with 75.0% EO utilization achieves significantly better accuracy (81.4%) in noisy conditions (noise variance = 0.12) compared to traditional training methods with 99.59% EO utilization (73.7%). Additionally, it maintains an average accuracy of 85.0% across different noise levels, outperforming the traditional method's average accuracy of 81.9%. Overall, the proposed approach presents a significant step towards harnessing the full potential of multimodal data fusion in diverse machine learning applications such as robotics, healthcare, satellite imagery, and defense applications.

4.
J Environ Manage ; 369: 122405, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236616

RESUMEN

Phosphorus (P) pollution in aquatic environments poses significant environmental challenges, necessitating the development of effective remediation strategies, and biochar has emerged as a promising adsorbent for P removal at the cost of extensive research resources worldwide. In this study, a machine learning approach was proposed to simulate and predict the performance of biochar in removing P from water. A dataset consisting of 190 types of biochar was compiled from literature, encompassing various variables including biochar characteristics, water quality parameters, and operating conditions. Subsequently, the random forest and CatBoost algorithms were fine-tuned to establish a predictive model for P adsorption capacity. The results demonstrated that the optimized CatBoost model exhibited high prediction accuracy with an R2 value of 0.9573, and biochar dosage, initial P concentration in water, and C content in biochar were identified as the predominant factors. Furthermore, partial dependence analysis was employed to examine the impact of individual variables and interactions between two features, providing valuable insights for adsorbent design and operating condition optimization. This work presented a comprehensive framework for applying a machine learning approach to address environmental issues and provided a valuable tool for advancing the design and implementation of biochar-based water treatment systems.


Asunto(s)
Carbón Orgánico , Aprendizaje Automático , Fósforo , Fósforo/química , Carbón Orgánico/química , Adsorción , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Algoritmos
5.
Heliyon ; 10(18): e37608, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309848

RESUMEN

During the last few years, Bike Sharing Systems (BSS) have become a popular means of transportation in several cities across the world, owing to their low costs and associated advantages. Citizens have adopted these systems as they help improve their health and contribute to creating more sustainable cities. However, customer satisfaction and the willingness to use the systems are directly affected by the ease of access to the docking stations and finding available bikes or slots. Therefore, system operators and managers' major responsibilities focus on urban and transport planning by improving the rebalancing operations of their BSS. Many approaches can be considered to overcome the unbalanced station problem, but predicting the number of arrivals and departures at the docking stations has been proven to be one of the most efficient. In this paper, we study the features that influence the prediction of bikes' arrivals and departures in Barcelona BSS, using a Random Forest model and a one-year data period. We considered features related to the weather, the stations' characteristics, and the facilities available within a 200-meter diameter of each station, called spatial features. The results indicate that features related to specific months, as well as temperature, pressure, altitude, and holidays, have a strong influence on the model, while spatial features have a small impact on the prediction results.

6.
Sensors (Basel) ; 24(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39275431

RESUMEN

Advancements in deep learning speech representations have facilitated the effective use of extensive unlabeled speech datasets for Parkinson's disease (PD) modeling with minimal annotated data. This study employs the non-fine-tuned wav2vec 1.0 architecture to develop machine learning models for PD speech diagnosis tasks, such as cross-database classification and regression to predict demographic and articulation characteristics. The primary aim is to analyze overlapping components within the embeddings on both classification and regression tasks, investigating whether latent speech representations in PD are shared across models, particularly for related tasks. Firstly, evaluation using three multi-language PD datasets showed that wav2vec accurately detected PD based on speech, outperforming feature extraction using mel-frequency cepstral coefficients in the proposed cross-database classification scenarios. In cross-database scenarios using Italian and English-read texts, wav2vec demonstrated performance comparable to intra-dataset evaluations. We also compared our cross-database findings against those of other related studies. Secondly, wav2vec proved effective in regression, modeling various quantitative speech characteristics related to articulation and aging. Ultimately, subsequent analysis of important features examined the presence of significant overlaps between classification and regression models. The feature importance experiments discovered shared features across trained models, with increased sharing for related tasks, further suggesting that wav2vec contributes to improved generalizability. The study proposes wav2vec embeddings as a next promising step toward a speech-based universal model to assist in the evaluation of PD.


Asunto(s)
Bases de Datos Factuales , Enfermedad de Parkinson , Habla , Enfermedad de Parkinson/fisiopatología , Humanos , Habla/fisiología , Aprendizaje Profundo , Masculino , Femenino , Anciano , Aprendizaje Automático , Persona de Mediana Edad
7.
JMIR Hum Factors ; 11: e52310, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133539

RESUMEN

BACKGROUND: Mobile health (mHealth) solutions can improve the quality, accessibility, and equity of health services, fostering early rehabilitation. For individuals with hearing loss, mHealth apps might be designed to support the decision-making processes in auditory diagnostics and provide treatment recommendations to the user (eg, hearing aid need). For some individuals, such an mHealth app might be the first contact with a hearing diagnostic service and should motivate users with hearing loss to seek professional help in a targeted manner. However, personalizing treatment recommendations is only possible by knowing the individual's profile regarding the outcome of interest. OBJECTIVE: This study aims to characterize individuals who are more or less prone to seeking professional help after the repeated use of an app-based hearing test. The goal was to derive relevant hearing-related traits and personality characteristics for personalized treatment recommendations for users of mHealth hearing solutions. METHODS: In total, 185 (n=106, 57.3% female) nonaided older individuals (mean age 63.8, SD 6.6 y) with subjective hearing loss participated in a mobile study. We collected cross-sectional and longitudinal data on a comprehensive set of 83 hearing-related and psychological measures among those previously found to predict hearing help seeking. Readiness to seek help was assessed as the outcome variable at study end and after 2 months. Participants were classified into help seekers and nonseekers using several supervised machine learning algorithms (random forest, naïve Bayes, and support vector machine). The most relevant features for prediction were identified using feature importance analysis. RESULTS: The algorithms correctly predicted action to seek help at study end in 65.9% (122/185) to 70.3% (130/185) of cases, reaching 74.8% (98/131) classification accuracy at follow-up. Among the most important features for classification beyond hearing performance were the perceived consequences of hearing loss in daily life, attitude toward hearing aids, motivation to seek help, physical health, sensory sensitivity personality trait, neuroticism, and income. CONCLUSIONS: This study contributes to the identification of individual characteristics that predict help seeking in older individuals with self-reported hearing loss. Suggestions are made for their implementation in an individual-profiling algorithm and for deriving targeted recommendations in mHealth hearing apps.


Asunto(s)
Pérdida Auditiva , Aplicaciones Móviles , Telemedicina , Humanos , Femenino , Masculino , Persona de Mediana Edad , Pérdida Auditiva/rehabilitación , Pérdida Auditiva/psicología , Estudios Longitudinales , Anciano , Estudios Transversales , Aceptación de la Atención de Salud/psicología , Aceptación de la Atención de Salud/estadística & datos numéricos , Audífonos
8.
J Pers Med ; 14(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39201996

RESUMEN

Predicting type 2 diabetes mellitus (T2DM) by using phenotypic data with machine learning (ML) techniques has received significant attention in recent years. PyCaret, a low-code automated ML tool that enables the simultaneous application of 16 different algorithms, was used to predict T2DM by using phenotypic variables from the "Nurses' Health Study" and "Health Professionals' Follow-up Study" datasets. Ridge Classifier, Linear Discriminant Analysis, and Logistic Regression (LR) were the best-performing models for the male-only data subset. For the female-only data subset, LR, Gradient Boosting Classifier, and CatBoost Classifier were the strongest models. The AUC, accuracy, and precision were approximately 0.77, 0.70, and 0.70 for males and 0.79, 0.70, and 0.71 for females, respectively. The feature importance plot showed that family history of diabetes (famdb), never having smoked, and high blood pressure (hbp) were the most influential features in females, while famdb, hbp, and currently being a smoker were the major variables in males. In conclusion, PyCaret was used successfully for the prediction of T2DM by simplifying complex ML tasks. Gender differences are important to consider for T2DM prediction. Despite this comprehensive ML tool, phenotypic variables alone may not be sufficient for early T2DM prediction; genotypic variables could also be used in combination for future studies.

9.
Sci Total Environ ; 950: 175283, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111449

RESUMEN

There has been an increase in tile drained area across the US Midwest and other regions worldwide due to agricultural expansion, intensification, and climate variability. Despite this growth, spatially explicit tile drainage maps remain scarce, which limits the accuracy of hydrologic modeling and implementation of nutrient reduction strategies. Here, we developed a machine-learning model to provide a Spatially Explicit Estimate of Tile Drainage (SEETileDrain) across the US Midwest in 2017 at a 30-m resolution. This model used 31 satellite-derived and environmental features after removing less important and highly correlated features. It was trained with 60,938 tile and non-tile ground truth points within the Google Earth Engine cloud-computing platform. We also used multiple feature importance metrics and Accumulated Local Effects to interpret the machine learning model. The results show that our model achieved good accuracy, with 96 % of points classified correctly and an F1 score of 0.90. When tile drainage area is aggregated to the county scale, it agreed well (r2 = 0.69) with the reported area from the Ag Census. We found that Land Surface Temperature (LST) along with climate- and soil-related features were the most important factors for classification. The top-ranked feature is the median summer nighttime LST, followed by median summer soil moisture percent. This study demonstrates the potential of applying satellite remote sensing to map spatially explicit agricultural tile drainage across large regions. The results should be useful for land use change monitoring and hydrologic and nutrient models, including those designed to achieve cost-effective agricultural water and nutrient management strategies. The algorithms developed here should also be applicable for other remote sensing mapping applications.

10.
J Neurosci ; 44(39)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39187379

RESUMEN

Recording and analysis of neural activity are often biased toward detecting sparse subsets of highly active neurons, masking important signals carried in low-magnitude and variable responses. To investigate the contribution of seemingly noisy activity to odor encoding, we used mesoscale calcium imaging from mice of both sexes to record odor responses from the dorsal surface of bilateral olfactory bulbs (OBs). The outer layer of the mouse OB is comprised of dendrites organized into discrete "glomeruli," which are defined by odor receptor-specific sensory neuron input. We extracted activity from a large population of glomeruli and used logistic regression to classify odors from individual trials with high accuracy. We then used add-in and dropout analyses to determine subsets of glomeruli necessary and sufficient for odor classification. Classifiers successfully predicted odor identity even after excluding sparse, highly active glomeruli, indicating that odor information is redundantly represented across a large population of glomeruli. Additionally, we found that random forest (RF) feature selection informed by Gini inequality (RF Gini impurity, RFGI) reliably ranked glomeruli by their contribution to overall odor classification. RFGI provided a measure of "feature importance" for each glomerulus that correlated with intuitive features like response magnitude. Finally, in agreement with previous work, we found that odor information persists in glomerular activity after the odor offset. Together, our findings support a model of OB odor coding where sparse activity is sufficient for odor identification, but information is widely, redundantly available across a large population of glomeruli, with each glomerulus representing information about more than one odor.


Asunto(s)
Ratones Endogámicos C57BL , Odorantes , Bulbo Olfatorio , Vigilia , Animales , Bulbo Olfatorio/fisiología , Ratones , Masculino , Femenino , Vigilia/fisiología , Olfato/fisiología , Neuronas Receptoras Olfatorias/fisiología
11.
PeerJ Comput Sci ; 10: e2188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145237

RESUMEN

The enhancement of fabric quality prediction in the textile manufacturing sector is achieved by utilizing information derived from sensors within the Internet of Things (IoT) and Enterprise Resource Planning (ERP) systems linked to sensors embedded in textile machinery. The integration of Industry 4.0 concepts is instrumental in harnessing IoT sensor data, which, in turn, leads to improvements in productivity and reduced lead times in textile manufacturing processes. This study addresses the issue of imbalanced data pertaining to fabric quality within the textile manufacturing industry. It encompasses an evaluation of seven open-source automated machine learning (AutoML) technologies, namely FLAML (Fast Lightweight AutoML), AutoViML (Automatically Build Variant Interpretable ML models), EvalML (Evaluation Machine Learning), AutoGluon, H2OAutoML, PyCaret, and TPOT (Tree-based Pipeline Optimization Tool). The most suitable solutions are chosen for certain circumstances by employing an innovative approach that finds a compromise among computational efficiency and forecast accuracy. The results reveal that EvalML emerges as the top-performing AutoML model for a predetermined objective function, particularly excelling in terms of mean absolute error (MAE). On the other hand, even with longer inference periods, AutoGluon performs better than other methods in measures like mean absolute percentage error (MAPE), root mean squared error (RMSE), and r-squared. Additionally, the study explores the feature importance rankings provided by each AutoML model, shedding light on the attributes that significantly influence predictive outcomes. Notably, sin/cos encoding is found to be particularly effective in characterizing categorical variables with a large number of unique values. This study includes useful information about the application of AutoML in the textile industry and provides a roadmap for employing Industry 4.0 technologies to enhance fabric quality prediction. The research highlights the importance of striking a balance between predictive accuracy and computational efficiency, emphasizes the significance of feature importance for model interpretability, and lays the groundwork for future investigations in this field.

12.
BMC Gastroenterol ; 24(1): 267, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148020

RESUMEN

PURPOSE: Irritable bowel syndrome (IBS) is a diagnosis defined by gastrointestinal (GI) symptoms like abdominal pain and changes associated with defecation. The condition is classified as a disorder of the gut-brain interaction (DGBI), and patients with IBS commonly experience psychological distress. The present study focuses on this distress, defined from reports of fatigue, anxiety, depression, sleep disturbances, and performance on cognitive tests. The aim was to investigate the joint contribution of these features of psychological distress in predicting IBS versus healthy controls (HCs) and to disentangle clinically meaningful subgroups of IBS patients. METHODS: IBS patients ( n = 49 ) and HCs ( n = 28 ) completed the Chalder Fatigue Scale (CFQ), the Hamilton Anxiety and Depression Scale (HADS), and the Bergen Insomnia Scale (BIS), and performed tests of memory function and attention from the Repeatable Battery Assessing Neuropsychological Symptoms (RBANS). An initial exploratory data analysis was followed by supervised (Random Forest) and unsupervised (K-means) classification procedures. RESULTS: The explorative data analysis showed that the group of IBS patients obtained significantly more severe scores than HCs on all included measures, with the strongest pairwise correlation between fatigue and a quality measure of sleep disturbances. The supervised classification model correctly predicted belongings to the IBS group in 80% of the cases in a test set of unseen data. Two methods for calculating feature importance in the test set gave mental and physical fatigue and anxiety the strongest weights. An unsupervised procedure with K = 3 showed that one cluster contained 24% of the patients and all but two HCs. In the two other clusters, their IBS members were overall more impaired, with the following differences. One of the two clusters showed more severe cognitive problems and anxiety symptoms than the other, which experienced more severe problems related to the quality of sleep and fatigue. The three clusters were not different on a severity measure of IBS and age. CONCLUSION: The results showed that psychological distress is an integral component of IBS symptomatology. The study should inspire future longitudinal studies to further dissect clinical patterns of IBS to improve the assessment and personalized treatment for this and other patient groups defined as disorders of the gut-brain interaction. The project is registered at https://classic. CLINICALTRIALS: gov/ct2/show/NCT04296552 20/05/2019.


Asunto(s)
Ansiedad , Eje Cerebro-Intestino , Depresión , Fatiga , Síndrome del Colon Irritable , Aprendizaje Automático , Distrés Psicológico , Humanos , Femenino , Masculino , Síndrome del Colon Irritable/psicología , Síndrome del Colon Irritable/fisiopatología , Síndrome del Colon Irritable/complicaciones , Adulto , Ansiedad/psicología , Ansiedad/diagnóstico , Persona de Mediana Edad , Fatiga/psicología , Fatiga/diagnóstico , Fatiga/fisiopatología , Fatiga/etiología , Depresión/psicología , Depresión/diagnóstico , Trastornos del Sueño-Vigilia/psicología , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/diagnóstico , Estudios de Casos y Controles , Pruebas Neuropsicológicas , Estrés Psicológico/psicología , Estrés Psicológico/diagnóstico
13.
Plant Cell Environ ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166340

RESUMEN

Mesophyll conductance ( g m ${g}_{{\rm{m}}}$ ) describes the efficiency with which CO 2 ${\mathrm{CO}}_{2}$ moves from substomatal cavities to chloroplasts. Despite the stipulated importance of leaf architecture in affecting g m ${g}_{{\rm{m}}}$ , there remains a considerable ambiguity about how and whether leaf anatomy influences g m ${g}_{{\rm{m}}}$ . Here, we employed nonlinear machine-learning models to assess the relationship between 10 leaf architecture traits and g m ${g}_{{\rm{m}}}$ . These models used leaf architecture traits as predictors and achieved excellent predictability of g m ${g}_{{\rm{m}}}$ . Dissection of the importance of leaf architecture traits in the models indicated that cell wall thickness and chloroplast area exposed to internal airspace have a large impact on interspecific variation in g m ${g}_{{\rm{m}}}$ . Additionally, other leaf architecture traits, such as leaf thickness, leaf density and chloroplast thickness, emerged as important predictors of g m ${g}_{{\rm{m}}}$ . We also found significant differences in the predictability between models trained on different plant functional types. Therefore, by moving beyond simple linear and exponential models, our analyses demonstrated that a larger suite of leaf architecture traits drive differences in g m ${g}_{{\rm{m}}}$ than has been previously acknowledged. These findings pave the way for modulating g m ${g}_{{\rm{m}}}$ by strategies that modify its leaf architecture determinants.

14.
Health Care Manag Sci ; 27(3): 313-327, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38985398

RESUMEN

This study presents a methodology for predicting the duration of surgical procedures using Machine Learning (ML). The methodology incorporates a new set of predictors emphasizing the significance of surgical team dynamics and composition, including experience, familiarity, social behavior, and gender diversity. By applying ML techniques to a comprehensive dataset of over 77,000 surgeries, we achieved a 24% improvement in the mean absolute error (MAE) over a model that mimics the current approach of the decision maker. Our results also underscore the critical role of surgeon experience and team composition dynamics in enhancing prediction accuracy. These advancements can lead to more efficient operational planning and resource allocation in hospitals, potentially reducing downtime in operating rooms and improving healthcare delivery.


Asunto(s)
Aprendizaje Automático , Humanos , Tempo Operativo , Quirófanos/organización & administración , Predicción , Procedimientos Quirúrgicos Operativos/métodos , Masculino , Femenino , Grupo de Atención al Paciente/organización & administración
15.
Allergy ; 79(8): 2173-2185, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995241

RESUMEN

BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.


Asunto(s)
Alérgenos , Predicción , Polen , Polen/inmunología , Predicción/métodos , Humanos , Cambio Climático , Modelos Teóricos , Monitoreo del Ambiente/métodos
16.
Entropy (Basel) ; 26(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39056900

RESUMEN

Rapid and precise detection of significant data streams within a network is crucial for efficient traffic management. This study leverages the TabNet deep learning architecture to identify large-scale flows, known as elephant flows, by analyzing the information in the 5-tuple fields of the initial packet header. The results demonstrate that employing a TabNet model can accurately identify elephant flows right at the start of the flow and makes it possible to reduce the number of flow table entries by up to 20 times while still effectively managing 80% of the network traffic through individual flow entries. The model was trained and tested on a comprehensive dataset from a campus network, demonstrating its robustness and potential applicability to varied network environments.

17.
Children (Basel) ; 11(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39062212

RESUMEN

Artificial intelligence has been applied to medical diagnosis and decision-making but it has not been used for classification of Class III malocclusions in children. OBJECTIVE: This study aims to propose an innovative machine learning (ML)-based diagnostic model for automatically classifies dental, skeletal and functional Class III malocclusions. METHODS: The collected data related to 46 cephalometric feature measurements from 4-14-year-old children (n = 666). The data set was divided into a training set and a test set in a 7:3 ratio. Initially, we employed the Recursive Feature Elimination (RFE) algorithm to filter the 46 input parameters, selecting 14 significant features. Subsequently, we constructed 10 ML models and trained these models using the 14 significant features from the training set through ten-fold cross-validation, and evaluated the models' average accuracy in test set. Finally, we conducted an interpretability analysis of the optimal model using the ML model interpretability tool SHapley Additive exPlanations (SHAP). RESULTS: The top five models ranked by their area under the curve (AUC) values were: GPR (0.879), RBF SVM (0.876), QDA (0.876), Linear SVM (0.875) and L2 logistic (0.869). The DeLong test showed no statistical difference between GPR and the other models (p > 0.05). Therefore GPR was selected as the optimal model. The SHAP feature importance plot revealed that he top five features were SN-GoMe (the ratio of the length of the anterior skull base SN to that of the mandibular base GoMe), U1-NA (maxillary incisor angulation to NA plane), Overjet (the distance between two lines perpendicular to the functional occlusal plane from U1 and L), ANB (the difference between angles SNA and SNB), and AB-NPo (the angle between the AB and N-Pog line). CONCLUSIONS: Our findings suggest that ML models based on cephalometric data could effectively assist dentists to classify dental, functional and skeletal Class III malocclusions in children. In addition, features such as SN_GoMe, U1_NA and Overjet can as important indicators for predicting the severity of Class III malocclusions.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39063444

RESUMEN

BACKGROUND: Several studies suggest that environmental and climatic factors are linked to the risk of mortality due to cardiovascular and respiratory diseases; however, it is still unclear which are the most influential ones. This study sheds light on the potentiality of a data-driven statistical approach by providing a case study analysis. METHODS: Daily admissions to the emergency room for cardiovascular and respiratory diseases are jointly analyzed with daily environmental and climatic parameter values (temperature, atmospheric pressure, relative humidity, carbon monoxide, ozone, particulate matter, and nitrogen dioxide). The Random Forest (RF) model and feature importance measure (FMI) techniques (permutation feature importance (PFI), Shapley Additive exPlanations (SHAP) feature importance, and the derivative-based importance measure (κALE)) are applied for discriminating the role of each environmental and climatic parameter. Data are pre-processed to remove trend and seasonal behavior using the Seasonal Trend Decomposition (STL) method and preliminary analyzed to avoid redundancy of information. RESULTS: The RF performance is encouraging, being able to predict cardiovascular and respiratory disease admissions with a mean absolute relative error of 0.04 and 0.05 cases per day, respectively. Feature importance measures discriminate parameter behaviors providing importance rankings. Indeed, only three parameters (temperature, atmospheric pressure, and carbon monoxide) were responsible for most of the total prediction accuracy. CONCLUSIONS: Data-driven and statistical tools, like the feature importance measure, are promising for discriminating the role of environmental and climatic factors in predicting the risk related to cardiovascular and respiratory diseases. Our results reveal the potential of employing these tools in public health policy applications for the development of early warning systems that address health risks associated with climate change, and improving disease prevention strategies.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Respiratorias , Humanos , Enfermedades Respiratorias/epidemiología , Monóxido de Carbono/análisis , Modelos Estadísticos , Contaminantes Atmosféricos/análisis , Servicio de Urgencia en Hospital/estadística & datos numéricos , Bosques Aleatorios
19.
Diagnostics (Basel) ; 14(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39001244

RESUMEN

Primary Immune Thrombocytopenia (ITP) is a rare autoimmune disease characterised by the immune-mediated destruction of peripheral blood platelets in patients leading to low platelet counts and bleeding. The diagnosis and effective management of ITP are challenging because there is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome. In this work, we conduct a feasibility study to check if machine learning can be applied effectively for the diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting. Various ML models, including Logistic Regression, Support Vector Machine, k-Nearest Neighbor, Decision Tree and Random Forest, were applied to data from the UK Adult ITP Registry and a general haematology clinic. Two different approaches were investigated: a demographic-unaware and a demographic-aware one. We conduct extensive experiments to evaluate the predictive performance of these models and approaches, as well as their bias. The results revealed that Decision Tree and Random Forest models were both superior and fair, achieving nearly perfect predictive and fairness scores, with platelet count identified as the most significant variable. Models not provided with demographic information performed better in terms of predictive accuracy but showed lower fairness scores, illustrating a trade-off between predictive performance and fairness.

20.
Comput Biol Med ; 179: 108809, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944904

RESUMEN

BACKGROUND: Virtual and augmented reality surgical simulators, integrated with machine learning, are becoming essential for training psychomotor skills, and analyzing surgical performance. Despite the promise of methods like the Connection Weights Algorithm, the small sample sizes (small number of participants (N)) typical of these trials challenge the generalizability and robustness of models. Approaches like data augmentation and transfer learning from models trained on similar surgical tasks address these limitations. OBJECTIVE: To demonstrate the efficacy of artificial neural network and transfer learning algorithms in evaluating virtual surgical performances, applied to a simulated oblique lateral lumbar interbody fusion technique in an augmented and virtual reality simulator. DESIGN: The study developed and integrated artificial neural network algorithms within a novel simulator platform, using data from the simulated tasks to generate 276 performance metrics across motion, safety, and efficiency. Innovatively, it applies transfer learning from a pre-trained ANN model developed for a similar spinal simulator, enhancing the training process, and addressing the challenge of small datasets. SETTING: Musculoskeletal Biomechanics Research Lab; Neurosurgical Simulation and Artificial Intelligence Learning Centre, McGill University, Montreal, Canada. PARTICIPANTS: Twenty-seven participants divided into 3 groups: 9 post-residents, 6 senior and 12 junior residents. RESULTS: Two models, a stand-alone model trained from scratch and another leveraging transfer learning, were trained on nine selected surgical metrics achieving 75 % and 87.5 % testing accuracy respectively. CONCLUSIONS: This study presents a novel blueprint for addressing limited datasets in surgical simulations through the strategic use of transfer learning and data augmentation. It also evaluates and reinforces the application of the Connection Weights Algorithm from our previous publication. Together, these methodologies not only enhance the precision of performance classification but also advance the validation of surgical training platforms.


Asunto(s)
Aprendizaje Automático , Humanos , Realidad Virtual , Redes Neurales de la Computación , Algoritmos , Fusión Vertebral/métodos , Realidad Aumentada , Masculino , Femenino , Competencia Clínica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA