Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Vet Sci ; 25(4): e51, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083203

RESUMEN

IMPORTANCE: Feline calicivirus (FCV)-associated viral systemic disease (VSD) is a severe systemic disease caused by virulent FCV strains and has a very poor prognosis. OBJECTIVE: To evaluate the clinical characteristics of a nosocomial FCV-VSD outbreak involving 18 cats in Korea. METHODS: Medical records of cats diagnosed with FCV-VSD from March to September 2018 at a referral veterinary hospital were reviewed. The patient's signalment, history, clinical features, diagnosis, treatment, and prognosis were evaluated. RESULTS: Two outbreaks involving 18 cats diagnosed with FCV-VSD occurred over a 6-month period at a referral hospital in Korea. Anorexia, lethargy, fever, and limb edema were the most commonly observed clinical symptoms. Lymphopenia and macrothrombocytopenia were the most common hematological findings, and hyperbilirubinemia and increased levels of aspartate aminotransferase, creatine kinase, and serum amyloid A were the most frequent results of serum biochemistry. FCV was detected by reverse transcription polymerase chain reaction in 11 patients and the remaining 7 were suspected with FCV-VSD. The overall mortality rate was 72.2%. The hospital was closed and disinfected twice, and no additional outbreaks have occurred since the last patient. CONCLUSIONS AND RELEVANCE: The clinical and diagnostic characteristics and outcomes of FCV-VSD described in this study can be used to recognize and contain infectious diseases through quick action. To the best of the authors' knowledge, this is the first report of a nosocomial outbreak of FCV-VSD in Asia.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Enfermedades de los Gatos , Infección Hospitalaria , Brotes de Enfermedades , Gatos , República de Corea/epidemiología , Brotes de Enfermedades/veterinaria , Calicivirus Felino/aislamiento & purificación , Calicivirus Felino/fisiología , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Animales , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Masculino , Femenino , Infección Hospitalaria/veterinaria , Infección Hospitalaria/virología , Infección Hospitalaria/epidemiología
2.
Front Vet Sci ; 11: 1377327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887538

RESUMEN

Feline calicivirus (FCV) is a significant viral pathogen causing upper respiratory tract and oral diseases in cats. The emergence of the virulent systemic FCV variant (VS-FCV) has raised global concern in the past decade. This study aims to explore the epidemiology, genetic characterization, and diversity of FCV strains circulating among Thai cats. Various sample types, including nasal, oral, and oropharyngeal swabs and fresh tissues, were collected from 184 cats across different regions of Thailand from 2016 to 2021. Using reverse transcription real-time polymerase chain reaction (RT-qPCR), FCV infection was investigated, with additional screening for feline herpesvirus-1 (FHV-1) by qPCR. The detection rates for FCV, FHV-1, and co-infection were 46.7, 65.8, and 31.5%, respectively. Significantly, the odds ratio (OR) revealed a strong association between the detection of a single FCV and the presence of gingivostomatitis lesions (OR: 7.15, 95% CI: 1.89-26.99, p = 0.004). In addition, FCV detection is notably less likely in vaccinated cats (OR: 0.22, 95% CI: 0.07-0.75, p = 0.015). Amino acid sequence analysis based on the VP1 major capsid protein gene of the 14 FCV-Thai (FCV-TH) strains revealed genetic diversity compared to the other 43 global strains (0 to 86.6%). Intriguingly, a vaccine-like FCV variant was detected in one cat. In summary, this study provides insights into the epidemiology and molecular characteristics of FCV diversity within the Thai cat population for the first time. The identification of unique physicochemical characteristics in the capsid hypervariable region of some FCV-TH strains challenges previous hypotheses. Therefore, further exploration of vaccine-like FCV variants is crucial for a comprehensive understanding and to improve viral prevention and control strategies.

3.
Animals (Basel) ; 14(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891609

RESUMEN

Urban stray cats are cats without owners that survive in the wild for extended periods of time. They are one of the most common stray animals in cities, and as such, monitoring the pathogens carried by urban stray cats is an important component of urban epidemiological surveillance. In order to understand the prevalence of respiratory diseases in urban stray cats in Shanghai and provide scientific evidence for the development of targeted prevention and control strategies for respiratory diseases in stray cats, we collected 374 ocular, nasal, and oropharyngeal swabs from urban stray cats in Shanghai from January 2022 to December 2022. After RNA extraction, we used real-time PCR to detect six respiratory pathogens, including influenza A virus, feline calicivirus, feline herpesvirus type 1, Mycoplasma, Chlamydia, and Bordetella bronchiseptica. The results showed that among the 374 samples, 146 tested positive, with a positivity rate of 39.04%. The highest positivity rate was observed for Mycoplasma felis at 18.72% (70/374), followed by Chlamydia felis at 11.76% (44/374), feline calicivirus at 3.74% (14/374), feline herpesvirus 1 at 3.48% (13/374), Bordetella bronchiseptica at 1.34% (5/374), and influenza A virus was not detected. The highest positivity rate for Mycoplasma felis was in Minhang District at 31.94% (23/72), while Chlamydia felis and Bordetella bronchiseptica had the highest positivity rates in Jiading District at 23.53% (8/34) and 5.88% (2/34), respectively. The highest positivity rates for feline calicivirus and feline herpesvirus 1 were both observed in Qingpu District, at 14.46% (12/83) and 9.64% (8/83), respectively. A total of 36 samples showed mixed infections with two or more pathogens, with Mycoplasma felis being involved in 32 of these mixed infections, with the highest number of mixed infections being with Chlamydia felis at 25 samples. Respiratory pathogen positivity was detected throughout the year, with peak detection rates in summer and winter. The positivity rates of cat respiratory pathogens in different seasons showed statistical differences (χ2 = 27.73, p < 0.01). There was no statistical difference in the positivity rates of respiratory pathogens between cats of different genders (χ2 = 0.92, p > 0.05). The positivity rates of respiratory pathogens in cats of different age groups showed statistical differences (χ2 = 44.41, p < 0.01). Mycoplasma felis and Chlamydia felis were the main pathogens causing respiratory infections in stray cats, with Mycoplasma felis showing a much higher positivity rate than other respiratory pathogens and often co-infecting with Chlamydia felis and feline calicivirus. The positivity rate of Mycoplasma felis was high in summer, autumn, and winter, with no statistical difference between seasons. These results indicate a serious overall prevalence of respiratory pathogens in urban stray cats in the Shanghai area, showing seasonal trends and mixed infections with other pathogens. These findings suggest the need for comprehensive prevention and control measures to address respiratory pathogen infections in urban stray cats in the Shanghai area.

4.
Comp Immunol Microbiol Infect Dis ; 111: 102209, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880052

RESUMEN

A retrospective study was carried out on selected feline viral pathogens detected in domestic cat in Sicily, southern Italy. Samples from 64 cats, collected from 2020 to 2022, were analysed for the presence of feline panleukopenia virus, canine parvovirus type 2 (CPV-2), feline coronavirus (FCoV), feline calicivirus (FCV), feline herpesvirus type 1, norovirus (NoV), and rotavirus (RoV). Single (45 %) or mixed (38 %) viral infections were detected. FPV, related with other Italian FPV strains, remains the main viral cause of infection (66 %). CPV-2c Asian lineage strains (3 %) were detected for the first time in domestic cats in Europe. FCoV (29.6 %), either enteric or systemic, and systemic FCV (18.7 %) infections were detected in positive cats. Less commonly reported viruses (GIV.2/GVI.2 NoVs, RoV), potentially related to the animal/human interface, were detected at lower rates as well (5 %). The present epidemiological data suggest the need to improve disease prevention, immunization, and biosecurity strategies.


Asunto(s)
Calicivirus Felino , Enfermedades de los Gatos , Gatos , Animales , Estudios Retrospectivos , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Sicilia/epidemiología , Calicivirus Felino/aislamiento & purificación , Virosis/epidemiología , Virosis/veterinaria , Virosis/virología , Femenino , Masculino , Virus de la Panleucopenia Felina/aislamiento & purificación , Virus de la Panleucopenia Felina/genética , Coronavirus Felino/aislamiento & purificación , Parvovirus Canino/aislamiento & purificación , Norovirus , Rotavirus/aislamiento & purificación , Heces/virología
5.
Appl Environ Microbiol ; 90(6): e0038424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786363

RESUMEN

Carpet cleaning guidelines currently do not include the use of an antimicrobial, except after a bodily fluid event. To address this gap, we compared the efficacy of three antimicrobials-two hydrogen peroxide-based (H2O2) products (A and B) and one chlorine-based product (C)-and a steam treatment against two norovirus surrogates, specifically feline calicivirus (FCV) and Tulane virus (TuV). These tests were performed on nylon carpets with either water-permeable or waterproof backing types. The effect of repeated antimicrobial use on carpet properties was also evaluated. For a carpet with water-permeable backing, products A, B, and C achieved a 0.8, 3.1, and 0.9 log10 PFU/coupon reduction of FCV and 0.3, 2.5, and 0.4 log10 TCID50/coupon reduction of TuV, respectively, following a 30 min contact time. For carpet with waterproof backing, only product B achieved a 5.0 log10 PFU/coupon reduction of FCV and >3.0 log10 TCID50/coupon reduction of TuV, whereas products A and C achieved a 2.4 and 1.6 log10 PFU/coupon reduction of FCV and a 1.2 and 1.2 log10 TCID50/coupon reduction of TuV, respectively. Steam treatment achieved a ≥ 5.2 log10 PFU/coupon reduction of FCV and a > 3.2 log10 TCID50/coupon reduction of TuV in 15 seconds on the carpet with both backing types. The repeated use of products A and B decreased the tensile strength of the carpet backing, while use of product B resulted in cracks on carpet fibers. Overall, steam treatment for 15 seconds was efficacious on both carpet types, but only product B achieved efficacy after a 30-minute exposure on the carpet with waterproof backing.IMPORTANCECarpets are common in long-term care facilities, despite its potential as a vehicle for transmission of agents associated with healthcare-associated infections, including human norovirus (NoV). Presently, our understanding of carpet disinfection is limited; hence, there are no commercial antimicrobials against norovirus available for use on carpets. Our findings showed that steam treatment, which minimally affected the properties of carpet fibers and backing, was more efficacious against human norovirus surrogates on carpets compared to the three chemical antimicrobials tested. Additionally, the two surrogates were more sensitive to chemical antimicrobials on the carpet with waterproof backing compared to carpets with water-permeable backing. These findings can inform development of antimicrobials for use on carpets contaminated with human norovirus.


Asunto(s)
Norovirus , Vapor , Norovirus/efectos de los fármacos , Calicivirus Felino/efectos de los fármacos , Animales , Desinfectantes/farmacología , Nylons/farmacología , Antiinfecciosos/farmacología , Humanos , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Estados Unidos , Pisos y Cubiertas de Piso , United States Environmental Protection Agency , Carpas
6.
Heliyon ; 10(9): e30492, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711631

RESUMEN

Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 µg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 µl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.

7.
Front Microbiol ; 15: 1388420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756726

RESUMEN

Feline calicivirus (FCV) is a prevalent and impactful viral pathogen affecting domestic cats. As an RNA virus, FCV exhibits high mutability and genetic plasticity, enabling its persistence within cat populations. Viral genetic diversity is associated with a broad spectrum of clinical manifestations, ranging from asymptomatic infections and mild oral and upper respiratory tract diseases to the potential development of virulent systemic, and even fatal conditions. This diversity poses distinctive challenges in diagnosis, treatment, and prevention of diseases caused by FCV. Over the past four decades, research has significantly deepened understanding of this pathogen, with an emphasis on molecular biology, evolutionary dynamics, vaccine development, and disease management strategies. This review discusses various facets of FCV, including its genomic structure, evolution, innate immunity, pathogenesis, epidemiology, and approaches to disease management. FCV remains a complex and evolving concern in feline health, requiring continuous research to enhance understanding of its genetic diversity, to improve vaccine efficacy, and to explore novel treatment options.

8.
Vet Ophthalmol ; 27(4): 382-387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661719

RESUMEN

OBJECTIVE: To survey the prevalence of pathogens in shelter-housed cats with active ocular surface disease (OSD). ANIMALS STUDIED: A total of 255 shelter-housed domestic cats with evidence of active OSD. No normal, unaffected cats were sampled. PROCEDURE(S): OSD scoring was performed on cats with active OSD. Combined oropharyngeal/conjunctival swabs were submitted for rt-PCR/PCR for feline herpesvirus (FHV-1), feline calicivirus (FCV), Chlamydia spp. (CHL), Bordetella bronchiseptica (BORD), and Mycoplasma spp. (MYC). RESULTS: Pathogens were detected as follows: 76.4% (195/255) MYC, 57.6% (147/255) FHV-1, 42.7% (109/255) FCV, 26.7% (68/255) CHL, and 5.5% (14/255) BORD. Monoinfections affected 21.1% (54/255) animals, with MYC being the most common monoinfection (12.5%, 32/255), followed by FHV-1 (4.7%, 12/255), followed by CHL (2.4%, 6/255), followed by FCV (1.6%, 4/255), with no animals having a BORD monoinfection. Dual infections affected 36.4% of animals (93/255), with MYC detected in 30.1% (77/255) dual infections and FCV detected in 12.9% (33/255) dual infections. Dual infections with MYC and FCV together were detected in 9.8% (25/255) animals. Many animals (35.3%, 90/255) were found to be affected by 3 or more pathogens, and 7.1% (18/255) animals had no pathogens detected. OSD scores were not influenced by any variable assessed, including the number and type of pathogens detected. CONCLUSION: MYC, FHV-1, FCV, and CHL were commonly detected in this group of animals with OSD. Both MYC and FCV (alone or in combination with each other) were detected in multiple animals with active OSD, supporting prior evidence that either may independently act as a primary ocular surface pathogen.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Enfermedades de los Gatos , Infecciones por Mycoplasma , Mycoplasma , Animales , Gatos , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/microbiología , Calicivirus Felino/aislamiento & purificación , Mycoplasma/aislamiento & purificación , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Infecciones por Mycoplasma/veterinaria , Masculino , Femenino
9.
J Vet Med Sci ; 86(6): 660-664, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644183

RESUMEN

The leopard cat (Prionailurus bengalensis) is an endangered wildlife that is protected under Taiwan's regulations. The body of a road-killed leopard cat was found to contain sequences of feline calicivirus (FCV), designated W109-1443. Analysis of the complete genomic sequence revealed that it shared approximately 81% similarity with a Chinese strain of FCV found in a domestic cat. Phylogenetic analysis of the VP1 gene indicated that the W109-1443 isolate belonged to genogroup II. Recombination analysis revealed that the W109-1443 isolate may have resulted from recombination between two FCV strains. Given the potential impact of FCV on the health and survival of wild felids, further investigation is necessary to assess its pathogenicity in the leopard cat population.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Felidae , Genoma Viral , Filogenia , Animales , Calicivirus Felino/genética , Calicivirus Felino/aislamiento & purificación , Taiwán , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Felidae/virología
10.
Animals (Basel) ; 14(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473067

RESUMEN

The Caliciviridae family includes several viral pathogens of humans and animals, including norovirus (NoV), genus Norovirus, and feline calicivirus (FCV), genus Vesivirus. Due to their resistance in the environment, NoV and FCV may give rise to nosocomial infections, and indirect transmission plays a major role in their diffusion in susceptible populations. A pillar of the control of viruses resistant to an environment is the adoption of prophylaR1.6ctic measures, including disinfection. Since NoVs are not cultivatable in common cell cultures, FCV has been largely used as a surrogate of NoV for the assessment of effective disinfectants. Ozone (O3), a molecule with strong oxidizing properties, has shown strong microbicidal activity on bacteria, fungi, protozoa, and viruses. In this study, the virucidal and antiviral activities of an O3/O2 gas mixture containing O3 were tested at different concentrations (20, 35, and 50 µg/mL) for distinct contact times against FCV. The O3/O2 gas mixture showed virucidal and antiviral activities against FCV in a dose- and contact time-dependent fashion. Ozonation could be considered as a valid strategy for the disinfection of environments at risk of contamination by FCV and NoV.

11.
Heliyon ; 10(3): e25201, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371995

RESUMEN

Contaminated fomites can lead to hepatitis A virus (HAV) and human norovirus (HuNoV) disease outbreaks. Improved decontamination methods that are user-friendly, cost-effective, and waterless are being researched for sustainability. Traditional ultraviolet light (UV-C) technologies though effective for surface decontamination have drawbacks, using mercury lamps, that pose user-safety risk and environmental hazards. Therefore, UV-C light emitting diode (LED) systems are being designed for delivering required antiviral doses. The objective of this research was to determine the ability of UV-C LED (279 nm) systems to inactivate HuNoV surrogates, feline calicivirus (FCV-F9) and Tulane virus (TV), and HAV on Formica coupons in comparison to UV-C (254 nm) systems. FCV-F9 (∼6 log PFU/mL), TV (∼7 log PFU/mL), or HAV (∼6 log PFU/mL) at 100 µL were surface-spread on sterile Formica coupons (3 × 3 cm2), air-dried, and treated for up to 2.5 min with both systems. Each experiment was replicated thrice. Recovered infectious plaque counts were statistically analyzed using mixed model analysis of variance. FCV-F9, TV, and HAV showed D10 values of 23.37 ± 0.91 mJ/cm2, 16.32 ± 3.6 mJ/cm2, and 12.39 ± 0.70 mJ/cm2 using 279 nm UV-C LED, respectively and D10 values of 9.97 ± 2.44 mJ/cm2, 6.83 ± 1.13 mJ/cm2 and 12.40 ± 1.15 mJ/cm2, respectively with 254 nm UV-C. Higher 279 nm UV-C LED doses were required to cause HuNoV surrogate reduction than 254 nm UV-C, except similar doses with both systems were needed for HAV inactivation on Formica surfaces. It remains critical to measure UV intensity of optical sources and optimize exposure times for desired log reduction on surfaces.

12.
Virol J ; 21(1): 50, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414028

RESUMEN

Feline calicivirus (FCV) is a highly contagious virus in cats, which typically causes respiratory tract and oral infections. Despite vaccination against FCV being a regular practice in China, new FCV cases still occur. Antigenic diversity of FCV hinders the effective control by vaccination. This is first report which aims to investigate the molecular epidemiology and molecular characteristics of FCV in Kunshan, China. The nasopharyngeal swabs were collected from cats showing variable clinical signs from different animal clinics in Kunshan from 2022 to 2023. Preliminary detection and sequencing of the FCV capsid gene were performed to study genetic diversity and evolutionary characteristics. FCV-RNA was identified in 52 (26%) of the samples using RT-PCR. A significant association was found between FCV-positive detection rate, age, gender, vaccination status and living environment, while a non-significant association was found with breed of cats. Nucleotide analysis revealed two genotypes, GI and GII. GII predominated in Kunshan, with diverse strains and amino acid variations potentially affecting vaccination efficacy and FCV detection. Notably, analysis pinpointed certain strains' association with FCV-virulent systemic disease pathotypes. This investigation sheds light on FCV dynamics, which may aid in developing better prevention strategies and future vaccine designs against circulating FCV genotypes.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Enfermedades de los Gatos , Gatos , Animales , Filogenia , Calicivirus Felino/genética , Epidemiología Molecular , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Proteínas de la Cápside/genética , ARN , Enfermedades de los Gatos/epidemiología
13.
Trop Med Health ; 52(1): 9, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212868

RESUMEN

BACKGROUND: Weak acids, such as acetic acid, show virucidal effects against viruses, and disinfectants are considered effective virucidal agents possibly because of their low pH, depending on the proton concentration. This study aimed to evaluate the efficacy of different weak acids (acetic, oxalic, and citric acids) and eligible vinegars under different pH conditions by comparing their inactivation efficacies against enveloped and non-enveloped viruses. METHODS: Acetic, oxalic, and citric acids were adjusted to pH values of 2, 4 and 6, respectively. They were also diluted from 1 M to 0.001 M with distilled water. Enveloped influenza A virus (FulV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and non-enveloped feline calicivirus (FCV) were treated with adjusted weak acids for up to 30 min. These viruses were also reacted with white distilled vinegar (WDV) and grain-flavored distilled vinegar (GV) for up to 30 min. Infectious viral titers after the reactions were expressed as plaque-forming units per mL. RESULTS: Acetic acid showed virucidal effects against FulV at pH 4, whereas citric and oxalic acids did not. Acetic and citric acids inactivated SARS-CoV-2 at pH 2, whereas oxalic acid did not. All acids showed virucidal effects against FVC at pH 2; however, not at pH 4. The virucidal effects of the serially diluted weak acids were also reflected in the pH-dependent results. WDV and GV significantly reduced FulV titers after 1 min. SARS-CoV-2 was also susceptible to the virucidal effects of WDV and GV; however, the incubation period was extended to 30 min. In contrast, WDV and GV did not significantly inactivate FCV. CONCLUSIONS: The inactivation efficacy of weak acids is different even under the same pH conditions, suggesting that the virucidal effect of weak acids is not simply determined by pH, but that additional factors may also influence these effects. Moreover, eligible vinegars, the main component of which is acetic acid, may be potential sanitizers for some enveloped viruses, such as FulV, in the domestic environment.

14.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175184

RESUMEN

Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.


Asunto(s)
Infecciones por Caliciviridae , Terpenos , Gatos , Animales , Evaluación Preclínica de Medicamentos , Proteínas HSP70 de Choque Térmico , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/veterinaria
15.
Vaccines (Basel) ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140261

RESUMEN

Feline calicivirus (FCV) is one of the most important pathogens causing upper respiratory tract diseases in cats, posing a serious health threat to these animals. At present, FCV is mainly prevented through vaccination, but the protective efficacy of vaccines in China is limited. In this study, based on the differences in capsid proteins of isolates from different regions in China, as reported in our previous studies, seven representative FCV epidemic strains were selected and tested for their viral titers, virulence, immunogenicity, and extensive cross-protection. Subsequently, vaccine strains were selected to prepare inactivated vaccines. The whole-genome sequencing and analysis results showed that these seven representative FCV strains and 144 reference strains fell into five groups (A, B, C, D, and E). The strains isolated in China mainly fall into groups C and D, exhibiting regional characteristics. These Chinese isolates had a distant evolutionary relationship and low homology with the current FCV-255 vaccine strain. The screened FCV-HB7 and FCV-HB10 strains displayed desirable in vitro culture characteristics, with the highest virus proliferation titers (109.5 TCID50/mL) at 36 h post inoculation at a dose of 0.01 MOI. All five cats infected intranasally with FCV-HB7 or FCV-HB10 strains showed obvious clinical symptoms of FCV. The symptoms of cats infected with the FCV-HB7 strain were more severe than those infected with the FCV-HB10 strain. Both the single-strain inactivated immunization and combined bivalent inactivated vaccine immunization of FCV-HB7 and FCV-HB10 induced high neutralizing antibody titers in five cats immunized. Moreover, bivalent inactivated vaccine immunization protected cats from FCV-HB7 and FCV-HB10 strains. The cross-neutralizing antibody titer against seven representative FCV epidemic strains achieved by combined bivalent inactivated vaccine immunization was higher than that achieved by single-strain immunization, which was much higher than that achieved by commercial vaccine FCV-255 strain immunization. The above results suggest that the FCV-HB7 and FCV-HB10 strains screened in this study have great potential to become vaccine strains with broad-spectrum protective efficacy. However, their immune protective efficacy needs to be further verified by multiple methods before clinical application.

16.
Life (Basel) ; 13(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38137850

RESUMEN

Feline core vaccines strongly recommended for all cats are against Feline panleukopenia virus (FPV), Felid herpesvirus type 1 (FeHV-1), and Feline calicivirus (FCV), but cats can be classified as low- and high-risk based on their lifestyle. The aim of this study was to determine the actual seroprotection against FPV, FeHV-1, and FCV in a large cohort of Italian cats by using the VacciCheck test. A total of 740 cats (567 owned and 173 stray cats; 435 vaccinated and 305 unvaccinated) were analyzed for Protective Antibody Titers (PATs). Differences related to origin, sex, age, breed, FIV/FeLV status, health status, and time elapsed since last vaccination were evaluated. Less than half of the entire cohort (36.4%) had PATs for all three diseases simultaneously, increasing to 48.6% if weak positive values were also considered and 50.3% when considering only the 435 vaccinated cats. Particularly, antibodies were detected against FCV, FPV, and FeHV-1 at protective titers (PATs) in 78.6%, 68.1, and 49.1% of the cats, respectively. In general, owned, neutered, and adult FIV- and/or FeLV-negative cats were the most protected categories, even if not always for the three viruses. Most cats maintained high PATs for 3 years or longer after vaccination against FPV and FCV but not FeHV-1. Long-lasting protective immunity persisted for many years after the last vaccination (more than 18 years in the oldest cats). Nevertheless, since not all cats were protected after so many years and for all pathogens, checking protection via antibody titration could be the best choice to prevent immunity breakdowns. The discussion also focuses on the reliability of antibody titration for the two URTD (upper respiratory tract disease) viruses which, unlike for FPV, is not widely accepted as a valid index of protection.

17.
Front Microbiol ; 14: 1285268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033578

RESUMEN

Feline calicivirus (FCV) and Feline herpesvirus type I (FHV-I) are the main pathogens causing upper respiratory tract infections in cats, and some wild animals. These two viruses always coinfection and cause serious harm to pet industry and wild animals protection. Established a rapid and accurate differential diagnosis method is crucial for prevention and control of disease, however, the current main detection method for these two viruses, either is low sensitivity (immunochromatographic strip), or is time-consuming and cannot differential diagnosis (conventional single PCR). Nanoparticle-assisted polymerase chain reaction (Nano-PCR) is a recently developed technique for rapid detection method of virus and bacteria. In this study, we described a dual Nano-PCR assay through combining the nanotechnology and PCR technology, which for the clinical simultaneous detection of FCV and FHV-I and differential diagnosis of upper respiratory tract infections in cats or other animals. Under optimized conditions, the optimal annealing temperature for dual Nano-PCR was 51.5°C, and specificity test results showed it had no cross reactivity to related virus, such as feline panleukopenia virus (FPV), feline Infectious peritonitis virus (FIPV) and rabies virus (RABV). Furthermore, the detection limit of dual Nano-PCR for FCV and FHV-I both were 1 × 10-8 ng/µL, convert to number of copies of virus DNA was 6.22 × 103copies/µL (FCV) and 2.81 × 103copies/µL (FHV-I), respectively. The dual Nano-PCR detected result of 52 cat clinical samples, including ocular, nasal and faecal swabs, and (3 FCV-positive samples), was consistent with ordinary PCR and the clinical detection results. The dual Nano-PCR method established in this study with strong specificity and high sensitivity can be used for virus nucleic acid (FCV and FHV-I) detection of clinical samples of feline upper respiratory tract infections feline calicivirus and feline herpesvirus while providing support for the early diagnosis of cats that infected by FCV and FHV-I.

18.
J Microorg Control ; 28(3): 83-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37866900

RESUMEN

Norovirus (NoV)is a major causative virus of viral gastroenteritis and requires a general disinfection method because it is resistant to common disinfectants such as ethanol and chlorhexidine. This study aimed to find natural extracts as candidates for versatile disinfectant ingredients. The antiviral effect of natural extracts against NoV can be evaluated using the feline calicivirus (FCV)-inactivation test and NoV virus-like particle (NoV-VLP)-binding inhibition test. In this study, screening of natural extracts with anti- NoV effects was performed using these two methods. Of the 63 natural extracts examined, 14 were found to have high FCV-inactivation and NoV-VLP-binding inhibitory effects. In addition, we evaluated the NoV-VLPbinding inhibitory effect of grape seed extract(GSE)containing proanthocyanidins under multiple concentration conditions and treatment times and determined that the binding inhibitory effect of GSE was concentration- and time-dependent. Electron microscopy showed that GSE-treated NoV-VLPs aggregated, distorted, and swelled, suggesting that GSE directly interacts with NoV particles. The results suggest that some natural extracts containing GSE can be used as components of disinfectants against NoV.


Asunto(s)
Desinfectantes , Extracto de Semillas de Uva , Norovirus , Proantocianidinas , Animales , Gatos , Extracto de Semillas de Uva/farmacología , Desinfectantes/farmacología , Desinfección , Proantocianidinas/farmacología
19.
Vet Q ; 43(1): 1-12, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851857

RESUMEN

High-resolution melting (HRM) analysis, a post-polymerase chain reaction (PCR) application in a single closed tube, is the straightforward method for simultaneous detection, genotyping, and mutation scanning, enabling more significant dynamic detection and sequencing-free turnaround time. This study aimed to establish a combined reverse-transcription quantitative PCR and HRM (RT-qPCR-HRM) assay for diagnosing and genotyping feline calicivirus (FCV). This developed method was validated with constructed FCV plasmids, clinical swab samples from living cats, fresh-frozen lung tissues from necropsied cats, and four available FCV vaccines. We performed RT-qPCR to amplify a 99-base pair sequence, targeting a segment between open reading frame (ORF) 1 and ORF2. Subsequently, the HRM assay was promptly applied using Rotor-Gene Q® Software. The results significantly revealed simultaneous detection and genetic discrimination between commercially available FCV vaccine strains, wild-type Thai FCV strains, and VS-FCV strains within a single PCR reaction. There was no cross-reactivity with other feline common viruses, including feline herpesvirus-1, feline coronavirus, feline leukemia virus, feline immunodeficiency virus, and feline morbillivirus. The detection limit of the assay was 6.18 × 101 copies/µl. This study, therefore, is the first demonstration of the uses and benefits of the RT-qPCR-HRM assay for FCV detection and strain differentiation in naturally infected cats.


Asunto(s)
Infecciones por Caliciviridae , Calicivirus Felino , Enfermedades de los Gatos , Vacunas , Gatos , Animales , Calicivirus Felino/genética , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Mutación , Enfermedades de los Gatos/diagnóstico
20.
Animals (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37889723

RESUMEN

Feline calicivirus (FCV) is a common viral pathogen found in domestic cats. FCV is highly contagious and demonstrates a high genetic variability. Upper respiratory tract disease, oral ulcerations, salivation, and gingivitis-stomatitis have been regarded as typical clinical signs of FCV infection. Ulcerative dermatitis, abortion, severe pneumonia, enteritis, chronic stomatitis, and virulent systemic disease have been reported more sporadically. Limping syndrome has been also described either in naturally or experimentally FCV-infected cats. In this study, we monitored a small outbreak of FCV infection in two household cats, in which limping disease was monitored with a 12-day lag time. The complete genome sequence was determined for the viruses isolated from the oropharyngeal and rectal swabs of the two animals, mapping up to 39 synonymous nucleotide mutations. The four isolates were sensitive to low pH conditions and trypsin treatment, a pattern usually associated with viruses isolated from the upper respiratory tract. Overall, the asynchronous pattern of infections and the results of genome sequencing suggest that a virus of respiratory origin was transmitted between the animals and that the FCV strain was able to retain the limping disease pathotype during the transmission chain, as previously observed in experimental studies with FCV strains associated with lameness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA