Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Int J Pharm ; 664: 124609, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163928

RESUMEN

Magnesium stearate (MgSt) and lactose fines are often used as ternary components in carrier-based dry powder inhalers (DPIs) to improve fine particle fraction (FPF), but whether they act synergistically to improve aerosolization performance of DPI formulations is currently less studied. In addition, the applicability of utilizing powder rheological parameters to predict the FPF needs to be further verified. Thus, in this study, using fluticasone propionate (FP) as a model drug, effect of lactose fines addition in 0.5% MgSt containing DPI formulations on their powder and aerodynamic properties was explored. Influence of MgSt and fines mixing order on the DPIs performance was also investigated. The results showed that addition of lactose fines (1-10%) in 0.5% MgSt containing formulations could further improve flowability and enhance adhesion of the mixtures, and they could act synergistically to improve FPF. Moreover, the presence of 0.5% MgSt can greatly reduce the amount of lactose fines required to achieve the comparable FPF. The mixing order can affect distribution of MgSt on the carrier surface, with higher FPF noted when MgSt was mixed with carrier first, followed by lactose fines. A good linear relationship between powder rheological parameters such as basic flowability energy (BFE), Permeability and FPF was disclosed. In conclusion, in FP based DPIs, MgSt and lactose fines act synergistically to enhance FPF by tuning powder characteristics. Good flowability (27.39%) and strong adhesion (72.61%) contributed to the enhanced drug deposition in the lung.

2.
Int J Pharm ; 663: 124549, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39128621

RESUMEN

A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.


Asunto(s)
Adhesivos , Excipientes , Lactosa , Tamaño de la Partícula , Lactosa/química , Excipientes/química , Administración por Inhalación , Adhesivos/química , Química Farmacéutica/métodos , Portadores de Fármacos/química
3.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(4): 687-692, 2024 Aug 18.
Artículo en Chino | MEDLINE | ID: mdl-39041566

RESUMEN

OBJECTIVE: To evaluate the effects of fine particle matter (PM2.5) and ozone (O3) combined exposure on adenosine triphosphate (ATP) amount and ATPase activities in nasal mucosa of Sprague Dawley (SD) rats. METHODS: Twenty male SD rats were divided into control group (n=10) and exposure group (n=10) by random number table method. The rats were fed in the conventional clean environment and the air pollutant exposure system established by our team, respectively, and exposed for 208 d. During the exposure period, the concentrations of PM2.5 and O3 in the exposure system were monitored, and a comprehensive assessment of PM2.5 and O3 in the exposure system was conducted by combining self-measurement and site data. On the 208 d of exposure, the core, liver, spleen, kidney, testis and other major organs and nasal mucosal tissues of the rats were harvested. Each organ was weighed and the organ coefficient calculated. The total amount of ATP was measured by bioluminescence, and the activities of Na+-K+ -ATPase and Ca2+ -ATPase were detected by spectrophotometry. The t test of two independent samples was used to compare the differences among the indicator groups. RESULTS: From the 3rd week to the end of exposure duration, the body weight of the rats in the exposure group was higher than that in the control group (P < 0.05), and there was no significant difference in organ coefficients between the two groups. The average daily PM2.5 concentration in the exposure group was (30.68±19.23) µg/m3, and the maximum 8 h ozone concentration (O3-8 h) was (82.45±35.81) µg/m3. The chemiluminescence value (792.4±274.1) IU/L of ATP in nasal mucosa of the rats in the exposure group was lower than that in the control group (1 126.8±218.1) IU/L. The Na+-K+-ATPase activity (1.53±0.85) U/mg in nasal mucosa of the rats in the exposure group was lower than that in the control group (4.31±1.60) U/mg (P < 0.05). The protein content of nasal mucosa in the control group and the exposure group were (302.14±52.51) mg/L and (234.58±53.49) mg/L, respectively, and the activity of Ca2+-ATPase was (0.81±0.27) U/mg and (0.99±0.73) U/mg, respectively. There was no significant difference between the groups. CONCLUSION: The ability of power capacity decreased in the rat nasal mucossa under the sub-chronic low-concentration exposure of PM2.5 and O3.


Asunto(s)
Adenosina Trifosfato , Contaminantes Atmosféricos , Mucosa Nasal , Ozono , Material Particulado , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Mucosa Nasal/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
4.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073842

RESUMEN

Background: Development of an inhalable nanoformulation of dacomitinib (DMB) encapsulated in poly-(lactic-co-glycolic acid) nanoparticles (NPs) to improve solubility, facilitate direct lung delivery and overcome the systemic adverse effects. Methods: DMB-loaded poly-(lactic-co-glycolic acid) NPs were prepared using solvent evaporation and characterized for particle size, polydispersity index and zeta-potential. The NPs were evaluated for in vitro drug release, aerosolization performance and in vitro efficacy studies. Results: The NPs showed excellent particle characteristics and displayed a cumulative release of ∼40% in 5 days. The NPs demonstrated a mass median aerodynamic diameter of ∼3 µm and fine particle fraction of ∼80%. Further, in vitro cell culture studies showed improved cytotoxic potential of DMB-loaded NPs compared with free drug. Conclusion: The study underscores the potential of DMB-loaded NPs as a viable approach for non-small cell lung cancer treatment.

5.
Sci Technol Adv Mater ; 25(1): 2376522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055484

RESUMEN

Fine-particle bombardment (FPB) is typically used to modify metal surfaces by bombarding them with fine particles at high speed. FPB is not a coating technique but is used for forming microscale concavities and convexities on a surface. Previously, we reported that an FPB-treated surface showed antibacterial effects; however, the underlying mechanisms remain unclear. We hypothesized that the pitch size of concavity and convexity, and irregular microscale pattern of FPB-treated surfaces might contribute to the antibacterial performance. In this study, we applied FPB to stainless-steel surfaces and evaluated the antibacterial effects of the FPB-treated surfaces based on ISO 22,196:2007. The FPB-treated surfaces exhibited antibacterial activity against Escherichia coli, with an antibacterial activity value (R) of two or more. Furthermore, our experiments suggest that the antibacterial mechanism of the FPB-treated surface can be attributed to increased oxidative stress in bacteria owing to physical stress from the rough surface. The antibacterial effect of FPB-treated surfaces offers an effective measure against drug-resistant bacteria.


The antibacterial activity of FPB-treated surfaces can be attributed to increased oxidative stress induced by physical stress from the FPB-generated rough surface.

6.
Sci Total Environ ; 942: 173403, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38844217

RESUMEN

With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 µg/m3) and Malir (95 ± 40.9 µg/m3) being significantly above the World Health Organization's guidelines of 5 µg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 µg/m3 and 4.52 ± 3.68 µg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Contaminación del Aire/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Pakistán , Medición de Riesgo , Ciudades , Exposición a Riesgos Ambientales/estadística & datos numéricos
7.
Eur J Pharm Sci ; 200: 106828, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38862047

RESUMEN

The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.


Asunto(s)
Aerosoles , Budesonida , Liberación de Fármacos , Inhaladores de Polvo Seco , Tamaño de la Partícula , Dióxido de Silicio , Dióxido de Silicio/química , Dióxido de Silicio/administración & dosificación , Budesonida/química , Budesonida/administración & dosificación , Budesonida/farmacocinética , Porosidad , Inhaladores de Polvo Seco/métodos , Administración por Inhalación , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Broncodilatadores/administración & dosificación , Broncodilatadores/química , Broncodilatadores/farmacocinética , Portadores de Fármacos/química
8.
Int J Pharm ; 657: 124122, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621619

RESUMEN

The aim of this study was to investigate how the propensity for aerosolisation in binary adhesive mixtures was affected by the drug load, and to determine whether these findings could be linked to different blend states. Binary blends of two different lactose carriers, each with varying size and morphology, were prepared together with budesonide. In vitro aerosolisation studies were conducted at four different pressure drops, ranging from 0.5 to 4 kPa, utilising a Next Generation Impactor. Several dispersion parameters were derived from the relationship between the quantity of dispersed API and the pressure drop. The evolution of the parameters with drug load was complex, especially at low drug loads. While similar responses were observed for both carriers, the range of drug load that could be used varied significantly. The choice of carrier not only influenced the capacity for drug loading but also affected the spatial distribution of the API within the mixture, which, in turn, affected its aerosolisation propensity. Thus, the drug dispersion process could be linked to different configurations of the lactose carrier and budesonide in the blends, i.e. blend states. In conclusion, the study suggests that the concept of blend states can provide an explanation for the complex dispersion process observed in adhesive blends.


Asunto(s)
Adhesivos , Aerosoles , Budesonida , Portadores de Fármacos , Lactosa , Budesonida/química , Budesonida/administración & dosificación , Lactosa/química , Administración por Inhalación , Adhesivos/química , Portadores de Fármacos/química , Tamaño de la Partícula , Química Farmacéutica/métodos
9.
ACS Sens ; 9(3): 1178-1187, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38437216

RESUMEN

Undoubtedly, a deep understanding of PM2.5-induced tumor metastasis at the molecular level can contribute to improving the therapeutic effects of related diseases. However, the underlying molecular mechanism of fine particle exposure through long noncoding RNA (lncRNA) regulation in autophagy and, ultimately, lung cancer (LC) metastasis remains elusive; on the other hand, the related monitoring sensor platform used to investigate autophagy and cell migration is lacking. Herein, this study performed an air-liquid interface microfluidic monitoring sensor (AIMMS) platform to analyze human bronchial epithelial cells after PM2.5 stimulation. The multiomics analysis [RNA sequencing (RNA-seq) on lncRNA and mRNA expressions separately] showed that MALAT1 was highly expressed in the PM2.5 treatment group. Furthermore, RNA-seq analysis demonstrated that autophagy-related pathways were activated. Notably, the main mRNAs associated with autophagy regulation, including ATG4D, ATG12, ATG7, and ATG3, were upregulated. Inhibition or downregulation of MALAT1 inhibited autophagy via the ATG4D/ATG12/ATG7/ATG3 pathway after PM2.5 exposure and ultimately suppressed LC metastasis. Thus, based on the AIMMS platform, we found that MALAT1 might become a promising therapeutic target. Furthermore, this low-cost AIMMS system as a fluorescence sensor integrated with the cell-monitor module could be employed to study LC migration after PM2.5 exposure. With the fluorescence cell-monitoring module, the platform could be used to observe the migration of LC cells and construct the tumor metastasis model. In the future, several fluorescence probes, including nanoprobes, could be used in the AIMMS platform to investigate many other biological processes, especially cell interaction and migration, in the fields of toxicology and pharmacology.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Microfluídica , Neoplasias Pulmonares/genética , Material Particulado/toxicidad , Autofagia
10.
Sci Total Environ ; 927: 172040, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554962

RESUMEN

Civil airports are recognized as significant contributors to fine particulate matter, especially ultra-fine particulate matter (UFP). The pollutants from airport activities have a notable adverse impact on global climate, urban air quality, and public health. However, there is a lack of practical observational studies on the characterization of integrated pollutant emissions from large civil airports. This study aims to focus on the combined emission characteristics of particulate number concentration (PNC), size distribution, and components at a large civil airport, especially UFP. The findings reveal that airport activities significantly contribute to elevated PNC levels during aircraft activity in downwind conditions (four times higher than background levels) and upwind conditions (7.5 times higher). UFP dominates the PNC around the airport. The particle size distribution shows two peaks occurring around 10-30 nm and 60-80 nm. Notably, particles within the ranges of 17-29 nm and 57-101 nm account for 65.9 % and 12.0 % of the total PNC respectively. Aircraft landing has the greatest impact on particles sized between 6 and 17 nm while takeoff affects particles sized between 29 and 57 nm resulting in a respective increase in PNC by factors of approximately 3.27 and 35.4-fold increase compared to background levels. Different aircraft types exhibit varying effects on PNC with A320 and A321 showing more pronounced effects during takeoff and landing.The presence of airports leads to roughly five-fold rise in elemental component concentrations with Si being highest followed by OC, Ca, Al, Fe, Ca2+, EC, and Mg2+. The OC/EC ratio under high aircraft activity in downwind conditions falls within range of approximately 2.5-3.5. These characteristic components and ratio can be considered as identifying species for civil airports. PMF model show about 75 % of the particulate emissions at the airport boundary were related to airport activities.

11.
Water Res ; 255: 121464, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492311

RESUMEN

Changes in riverine sediment transport are an important part of land-sea geochemical cycling and further impact geochemical element fluxes in turbid rivers. However, as a vital nutrient element supporting primary productivity, silica mobilization from drainage in turbid rivers is overlooked. The turbid Yellow River has a strong ability to adsorb reactive silica, thereby exerting a substantial impact on the estuarine deposition of silica. Through an integration of monitoring databases, field sampling and historical hydrological data, we concluded that riverine fine particles control the exchangeable silica in the river and its estuary under soil erosion. Indoor simulation further revealed that the adsorbed content of exchangeable silica (ex-Si) in fine sediment constituted 35 % of total sediment matter. In addition, the transport of phosphorus and ex-Si was jointly regulated by fine sediment in global fluvial sediment transport, thereby exerting additional influence on the trophic structure of estuarine ecosystems. Against the backdrop of sediment budget deficit in the estuary, the heightened content of fine particles is depleting the silica storage from estuarine sediments.

12.
Environ Sci Pollut Res Int ; 31(15): 22847-22857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38411908

RESUMEN

Plastic aging can cause alterations in the physical and chemical characteristics of plastics, as well as their behavior in the environment. Due to the extremely slow natural aging process, laboratory simulated aging methods have to be used. In this study, non-thermal plasma (NTP) was adopted to investigate the aging process of polypropylene (PP) and polyethylene terephthalate (PET) microplastics. Various analytical instruments, including proton transfer reaction mass spectrometry and single-particle aerosol mass spectrometry, were employed to examine and identify the organic constituents of the gas, liquid, and particle phase degradation products, as well as to monitor the degradation process. The results showed that after 90 min of aging, both PP and PET surfaces showed yellowing, and the carbonyl index of PP increased while that of PET decreased, with an increase in crystallinity. The organic components of reaction products, such as ketones, esters, acids, and alcohols, increased with longer aging times. Gas products mainly contain aromatic hydrocarbons, while particles from aged PET contain compounds with benzene rings and metal elements. Liquid products from aged PP show a significant presence of branched alkanes. Based on this analysis, degradation mechanisms of PP and PET by NTP were proposed. This investigation represents the initial systematically exploration of the release of organic substances during the degradation of microplastics mediated by NTP. It provides significant insights into the detrimental organic compounds emitted during this process, thereby offering valuable information for understanding the environmental and human health implications of natural microplastic degradation. Furthermore, it addressed the requirements for increased attention to the potential environmental risks associated with these harmful components.


Asunto(s)
Polipropilenos , Contaminantes Químicos del Agua , Humanos , Anciano , Polipropilenos/química , Plásticos/análisis , Microplásticos , Contaminantes Químicos del Agua/análisis , Envejecimiento , Tereftalatos Polietilenos , Monitoreo del Ambiente/métodos
13.
Int J Pharm ; 651: 123755, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163524

RESUMEN

This paper describes the development of a fixed dose dry powder combination of indacaterol maleate (Inda) and glycopyrronium bromide (Glyco) in Easyhaler® inhaler for a comparative pharmacokinetic (PK) study, as well as the outcome of such a study. The development aim was to produce formulations with three different in vitro dispersibility profiles for both Inda and Glyco. This so-called 'rake' approach allows for quantitation of the candidate formulations relative to the reference product Ultibro® Breezhaler® in terms of the key PK parameters. Three formulations (A, B and C) were produced based on the mixing energy concept. For both APIs, formulation A (lowest mixing energy) displayed the highest fine particle fractions and formulation C (highest mixing energy) the lowest. GMP manufacturing confirmed the performance of the three formulations. The candidate formulations were tested against the reference product in a single dose PK study in healthy volunteers. Clear differences in Inda plasma concentration profiles were observed between the treatments when administered concomitantly with charcoal, with Easyhaler A showing the highest Cmax value and Easyhaler C the lowest. Easyhaler B was bioequivalent to Ultibro Breezhaler with regard to the primary PK parameters of Inda, Cmax and AUC72h. For Glyco, Easyhaler formulations A, B and C provided lower peak concentrations than Ultibro Breezhaler. For AUC72h of Glyco, Easyhaler B was bioequivalent to the reference product. Additional measures for adjustment of formulation performance can be foreseen, whose effects can be predicted based on mixing energy theory.


Asunto(s)
Inhaladores de Polvo Seco , Nebulizadores y Vaporizadores , Humanos , Administración por Inhalación
14.
J Hazard Mater ; 466: 133328, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290336

RESUMEN

Airborne aerosols were collected in six size classes (PM<0.1, PM0.1-0.5, PM0.5-1, PM1-2.5, PM2.5-10 and PM>10) to investigate aerosol health risks in remote and industrial areas in Japan. We focused on heavy metals and their water-dispersed fractions. The average concentration of heavy metals was 18 ± 25-86 ± 48 ngm-3 for PM<0.1, 46 ± 19-154 ± 80 for PM0.5-1 ngm-3, 98 ± 49-422 ± 186 ngm-3 for PM1-2.5, 321 ± 305-1288 ± 727 ngm-3 for PM2.5-10 and 65 ± 52-914 ± 339 ngm-3 or PM>10, and these concentrations were higher in industrial areas. Heavy metals emitted from domestic anthropogenic sources were added to the long-range transport component of the aerosols. The water-dispersed fraction of heavy metals contained 3.3-40.1% of the total heavy metals in each size class. The relative contribution of Zn and other species (As, Cd, Cr, Ni, Pb, Mn, V and Cu) increased in the water-dispersed fraction. Smaller particles contained greater proportions of the water-dispersed heavy metal fraction. Carcinogenic risk (CR) and the hazard index (HI) were estimated for each size class. The CR of carcinogens was at acceptable levels (<1 ×10-6) for five particle size fractions. The HI values for carcinogens and noncarcinogens were also below acceptable levels (<1) for the same five size fractions. The estimated CR and HI values were dominated by contributions from the inhalation process.


Asunto(s)
Metales Pesados , Humanos , Japón , Medición de Riesgo , Metales Pesados/toxicidad , Metales Pesados/análisis , Carcinógenos/análisis , Aerosoles/toxicidad , Agua , Monitoreo del Ambiente , China
15.
Eur J Pharm Sci ; 193: 106679, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128841

RESUMEN

This study investigates the effect of different mixers and the applicability of the mixing energy (ME) concept to dry powder formulations for inhalation. With the aim to step-wise build and expand this concept, adhesive mixtures of 2 % budesonide and lactose carrier were investigated, both with 1 % magnesium stearate (MgSt) added in a 'coating' step, and without, the latter referred to as 'naked' formulations. For high shear mixed formulations, the fine particle fraction (FPF) was found to increase with increasing ME up to 60 % and thereafter decreased, using the Novolizer device. The data could be well fitted to the modeling equation, thus confirming the validity of the ME concept. The naked formulations displayed a linear decrease in FPF with increasing ME, again showing the validity of the ME concept. For Turbula mixed formulations, FPF increased with increased mixing time (and mixing energy) for all batches. The naked (binary) composition reached to higher FPF values than for high shear mixing and the formulation with MgSt reached to FPF values around 60 %, demonstrating that it is possible to achieve the same high drug dispersibility with the Turbula mixer as for high shear mixer. An equation for calculation of mixing energy in Turbula mixing was set up in an analogous way to the equation for high shear mixing, which enabled direct comparison between the two mixers.


Asunto(s)
Adhesivos , Química Farmacéutica , Portadores de Fármacos , Administración por Inhalación , Budesonida , Polvos , Tamaño de la Partícula , Lactosa , Inhaladores de Polvo Seco
16.
Photochem Photobiol ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037431

RESUMEN

There has been much recent interest in whole-room far-UVC (wavelength around 222 nm) to markedly and safely reduce overall levels of airborne pathogens in occupied indoor locations. Far-UVC light produces very low levels of ozone-in real-world scenarios induced ozone levels of less than 10 ppb, and much less in moderately or well-ventilated rooms compliant with US far-UVC dose recommendations, and very much less in rooms compliant with international far-UVC dose standards. At these very low ozone levels, there is no epidemiological evidence of increased health risks from any of the very large outdoor ozone studies, whether from ozone alone or from ozone plus associated pollutants. Indoors, at the low ozone concentrations of relevance here, ozone does not react rapidly enough with preexisting airborne volatile organic compounds to compete with even extremely low levels of room ventilation, so significant ozone-induced ultrafine particle production is very unlikely. Direct measurements in real-life room scenarios are consistent with these conclusions. A potential exception is the cleaning material limonene, which has an unusually high ozone interaction cross-section; in the far-UVC context, turning off far-UVC lights during cleaning with limonene products would be reasonable.

17.
Front Public Health ; 11: 1241977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915824

RESUMEN

Background: Combustion of solid biomass fuels using traditional stoves which is the daily routine for 3 billion people emits various air pollutants including fine particulate matter which is one of the widely recognized risk factors for various cardiorespiratory and other health problems. But, there is only limited evidences of kitchen PM2.5 concentrations in rural Ethiopia. Objective: This study is aimed to estimate the 24-h average kitchen area concentrations of PM2.5 and to identify associated factors in rural households of northwest Ethiopia. Method: The average kitchen area PM2.5 concentrations were measured using a low-cost light-scattering Particle and Temperature Sensor Plus (PATS+) for a 24-h sampling period. Data from the PATS+ was downloaded in electronic form for further analysis. Other characteristics were collected using face-to-face interviews. Independent sample t-test and one-way analysis of variance were used to test differences in PM2.5 concentrations between and among various characteristics, respectively. Result: Mixed fuels were the most common cooking biomass fuel. The 24-h average kitchen PM2.5 concentrations was estimated to be 405 µg/m3, ranging from 52 to 965 µg/m3. The average concentrations were 639 vs. 336 µg/m3 (p < 0.001) in the thatched and corrugated iron sheet roof kitchens, respectively. The average concentration was also higher among mixed fuel users at 493 vs. 347 µg/m3 (p = 0.042) compared with firewood users and 493 vs. 233 µg/m3 (p = 0.007) as compared with crop residue fuel users. Statistically significant differences were also observed across starter fuel types 613 vs. 343 µg/m3 (p = 0.016) for kerosene vs. dried leaves and Injera baking events 523 vs. 343 µg/m3 (p < 0.001) for baked vs. not baked events. Conclusion: The average kitchen PM2.5 concentrations in the study area exceeded the world health organization indoor air quality guideline value of 15 µg/m3 which can put pregnant women at greater risk and contribute to poor pregnancy outcomes. Thatched roof kitchen, mixed cooking fuel, kerosene fire starter, and Injera baking events were positively associated with high-level average kitchen PM2.5. concentration. Simple cost-effective interventions like the use of chimney-fitted improved stoves and sensitizing women about factors that aggravate kitchen PM2.5 concentrations could reduce kitchen PM 2.5 levels in the future.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Embarazo , Humanos , Femenino , Material Particulado/análisis , Monitoreo del Ambiente , Biomasa , Etiopía , Queroseno/análisis , Contaminación del Aire Interior/análisis
18.
Adv Colloid Interface Sci ; 322: 103047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976913

RESUMEN

The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 µm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest. Thus, this review focuses on microbubble generation methods that have the potential to be scaled up for industrial applications, with a specific emphasis on their suitability for froth flotation. The methods are categorized based on their scalability: high-hydrodynamic cavitation, porous media/medium-dissolved air, electrolysis/low-microfluidics, and acoustic methods. The bubble generation mechanisms, characteristics, advantages and limitations of each method and its applications in froth flotation are discussed to provide suggestions for improvement. There is still no appropriate technology that can optimize bubble size distribution, production rate and cost together for industrial froth flotation application. Therefore, novel approaches of combining multiple methods are also explored to achieve the potential synergic effects. By addressing the limitations of current microbubble generation methods and proposing potential enhancements, this review aims to contribute to the development of efficient and cost-effective microbubble generation technologies for fine and ultrafine particles in the froth flotation industry.

19.
Atmos Environ (1994) ; 3132023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37781099

RESUMEN

Random Forest algorithms have extensively been used to estimate ambient air pollutant concentrations. However, the accuracy of model-predicted estimates can suffer from extrapolation problems associated with limited measurement data to train the machine learning algorithms. In this study, we developed and evaluated two approaches, incorporating low-cost sensor data, that enhanced the extrapolating ability of random-forest models in areas with sparse monitoring data. Rochester, NY is the area of a pregnancy-cohort study. Daily PM2.5 concentrations from the NAMS/SLAMS sites were obtained and used as the response variable in the model, with satellite data, meteorological, and land-use variables included as predictors. To improve the base random-forest models, we used PM2.5 measurements from a pre-existing low-cost sensors network, and then conducted a two-step backward selection to gradually eliminate variables with potential emission heterogeneity from the base models. We then introduced the regression-enhanced random forest method into the model development. Finally, contemporaneous urinary 1-hydroxypyrene was used to evaluate the PM2.5 predictions generated from the two approaches. The two-step approach increased the average external validation R2 from 0.49 to 0.65, and decreased the RMSE from 3.56 µg/m3 to 2.96 µg/m3. For the regression-enhanced random forest models, the average R2 of the external validation was 0.54, and the RMSE was 3.40 µg/m3. We also observed significant and comparable relationships between urinary 1-hydroxypyrene levels and PM2.5 predictions from both improved models. This PM2.5 model estimation strategy could improve the extrapolating ability of random forest models in areas with sparse monitoring data.

20.
Environ Monit Assess ; 195(10): 1187, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698727

RESUMEN

Ambient PM2.5 (particles less than 2.5 µm in diameter) is monitored in many countries including Australia. Occasionally PM2.5 instruments may report negative measurements, although in realty the ambient air can never contain negative amounts of particles. Some negative readings are caused by instrument faults or procedural errors, thus can be simply invalidated from air quality reporting. There are occasions, however, when negative readings occur due to other factors including technological or procedural limitations. Treatment of such negative data requires consideration of factors such as measurement uncertainty, instrument noise and risk for significant bias in air quality reporting. There is very limited documentation on handling negative PM2.5 data in the literature. This paper demonstrates how a threshold is determined for controlling negative hourly PM2.5 readings in the New South Wales (NSW) air quality data system. The investigation involved a review of thresholds used in different data systems and an assessment of instrument measurement uncertainties, zero air test data and impacts on key reporting statistics when applying different thresholds to historical datasets. The results show that a threshold of -10.0 µg/m3 appears optimal for controlling negative PM2.5 data in public reporting. This choice is consistent with the measurement uncertainty estimates and the zero air test data statistics calculated for the NSW Air Quality Monitoring Network, and is expected not to have significant impacts on key compliance reporting statistics such as data availability and annual average pollution levels. The analysis can be useful for air quality monitoring in other Australian jurisdictions or wider context.


Asunto(s)
Contaminación del Aire , Monitoreo del Ambiente , Australia , Contaminación Ambiental , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA