Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 874590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35519800

RESUMEN

Roses are highly valued as cut flowers worldwide but have limited vase life. Peduncle bending "bent neck" or "necking" is a major cause of reduced vase life, especially in some cultivars. Necking is thought to be caused by either an air embolism or accumulation of microorganisms at or within the stem end, blocking the xylem vessels and preventing water uptake. However, the underlying mechanisms of necking are poorly understood. Here, RNAseq analysis was applied to compare gene expression across three stages of peduncle necking (straight, <90°, and >90°), in the necking-susceptible Rosa hybrida cultivar H30. Most gene expression change was later in bending and there was, overall, more downregulation than upregulation of gene expression during necking. Photosynthetic, starch, and lignin biosynthesis genes were all downregulated, while genes associated with galactose metabolism, producing raffinose and trehalose that are both related to osmoprotection, were upregulated. Genes associated with starch breakdown, autophagy, and senescence were also upregulated, as were most of the NAC and WRKY transcription factors, involved in stress and senescence regulation. Microscopy showed a cellular collapse in the peduncle. These data support a possible mechanism, whereby a reduction in water transport leads to a cellular collapse in the peduncle, accompanied by upregulation of senescence and drought responses.

2.
Am J Bot ; 109(4): 616-627, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075632

RESUMEN

PREMISE: Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility-a measure representing the potential for reproductive assurance-across floral lifespan in the mixed-mating biennial Sabatia angularis. METHODS: We examined stigma morphology and receptivity, autonomous self-pollen deposition, and seed number and size under autonomous self-pollination and hand outcross-pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. RESULTS: The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8-11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. CONCLUSIONS: Changes in stigma morphology and receptivity, timing of autonomous self-pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis.


Asunto(s)
Gentianaceae , Longevidad , Flores/anatomía & histología , Polinización , Reproducción
3.
Front Plant Sci ; 13: 1085933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714770

RESUMEN

Mechanisms regulating flower senescence are not fully understood in any species and are particularly complex in composite flowers. Dahlia (Dahlia pinnata Cav.) florets develop sequentially, hence each composite flower head includes florets of different developmental stages as the whole flower head ages. Moreover, the wide range of available cultivars enables assessment of intraspecific variation. Transcriptomes were compared amongst inner (younger) and outer (older) florets of two flower head ages to assess the effect of floret vs. flower head ageing. More gene expression, including ethylene and cytokinin pathway expression changed between inner and outer florets of older flower heads than between inner florets of younger and older flower heads. Additionally, based on Arabidopsis network analysis, different patterns of co-expressed ethylene response genes were elicited. This suggests that changes occur in young inner florets as the whole flower head ages that are different to ageing florets within a flower head. In some species floral senescence is orchestrated by the plant growth regulator ethylene. However, there is both inter and intra-species variation in its importance. There is a lack of conclusive data regarding ethylene sensitivity in dahlia. Speed of senescence progression, effects of ethylene signalling perturbation, and patterns of ethylene biosynthesis gene expression differed across three dahlia cultivars ('Sylvia', 'Karma Prospero' and 'Onesta') suggesting differences in the role of ethylene in their floral senescence, while effects of exogenous cytokinin were less cultivar-specific.

4.
AoB Plants ; 9(6): plx050, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29225762

RESUMEN

Low pollinator visitation in harsh environments may lead to pollen limitation which can threaten population persistence. Consequently, avoidance of pollen limitation is expected in outcrossing species subjected to habitually low pollinator service. The elevational decline in visitation rates on many high mountains provides an outstanding opportunity for addressing this question. According to a recent meta-analysis, levels of pollen limitation in alpine and lowland species do not differ. If parallel trends are manifested among populations of alpine species with wide elevational ranges, how do their uppermost populations contend with lower visitation? We investigated visitation rates and pollen limitation in high Andean Rhodolirium montanum. We test the hypothesis that lower visitation rates at high elevations are compensated for by the possession of long-lived flowers. Visitation rates decreased markedly over elevation as temperature decreased. Pollen limitation was absent at the low elevation site but did occur at the high elevation site. While initiation of stigmatic pollen deposition at high elevations was not delayed, rates of pollen arrival were lower, and cessation of pollination, as reflected by realized flower longevity, occurred later in the flower lifespan. Comparison of the elevational visitation decline and levels of pollen limitation indicates that flower longevity partially compensates for the lower visitation rates at high elevation. The functional role of flower longevity, however, was strongly masked by qualitative pollen limitation arising from higher abortion levels attributable to transference of genetically low-quality pollen in large clones. Stronger clonal growth at high elevations could counterbalance the negative fitness consequences of residual pollen limitation due to low visitation rates and/or difficult establishment under colder conditions. Visitation rates on the lower part of the elevational range greatly exceeded community rates recorded several decades ago when the planet was cooler. Current pollen limitation for some species in some habitats might underestimate historical levels.

5.
BMC Plant Biol ; 16: 77, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27039085

RESUMEN

BACKGROUND: In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. RESULTS: In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. CONCLUSIONS: A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.


Asunto(s)
Erysimum/crecimiento & desarrollo , Erysimum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocininas/metabolismo , Erysimum/genética , Etilenos/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Factores de Tiempo
6.
J Exp Bot ; 66(3): 945-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422499

RESUMEN

Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lilium/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Lilium/genética , Lilium/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Signal Behav ; 9(10): e972277, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482818

RESUMEN

Auxin's capacity to regulate aspects of plant development has been well characterized in model plant systems. In contrast, orchids have received considerably less attention, but the realization that many orchid species are endangered has led to culture-based propagation studies which have unveiled some functions for auxin in this system. This mini-review summarizes the many auxin-mediated developmental responses in orchids that are consistent with model systems; however, it also brings to the forefront auxin responses that are unique to orchid development, namely protocorm formation and ovary/ovule maturation. With regard to shoot establishment, we also assess auxin's involvement in orchid germination, PLB formation, and somatic embryogenesis. Further, it makes evident that auxin flow during germination of the undifferentiated, but mature, orchid embryo mirrors late embryogenesis of typical angiosperms. Also discussed is the use of orchid protocorms in future phytohormone studies to better understand the mechanisms behind meristem formation and organogenesis.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Orchidaceae/crecimiento & desarrollo , Orchidaceae/metabolismo , Transporte Biológico , Flores/fisiología , Modelos Biológicos , Orchidaceae/anatomía & histología , Polinización/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA