Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Más filtros










Intervalo de año de publicación
1.
Talanta ; 280: 126734, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173248

RESUMEN

Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.

2.
Talanta ; 280: 126707, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39146870

RESUMEN

Monitoring lysosomal dynamics in real-time, especially in vivo, poses significant challenges due to the complex and dynamic nature of cellular environments. It is extremely important to construct fluorescent probes with high stability for imaging lysosomes to minimize interference from other cellular components, in order to ensure prolonged imaging. A fluorescent probe (PDB) has been proposed for targeting lysosomes, which was less affected to changes in the cellular microenvironment (such as pH, viscosity and polarity). PDB can be easily prepared by 4'-piperazinoacetophenone and 2-(4-diethylamino)-2-hydroxybenzoyl) benzoicacid, containing a piperazine group for labeling and imaging lysosomes and the high pKa value (∼9.35) allowed PDB to efficiently track lysosomes. The emission wavelength of PDB in aqueous solution was 634 nm (λex = 572 nm, Фf = 0.11). The dynamic process of lysosome induced by starvation and rapamycin was successfully explored by fluorescence imaging. Compared with the commercially available Lyso-Tracker green, the high photostability fluorescent probe can ensure 3D high-fidelity tracking and resist photobleaching. Therefore, PDB, unaffected by the cell microenvironment, successfully achieved long-term tracking of lysosomal movement, even enabling imaging in tumor-bearing mice over 11 days. The strong fluorescence signal, high stability, and long-term tracking capability indicate that PDB has tremendous potential in monitoring biological processes.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124957, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39154401

RESUMEN

Hydrogen sulfide (H2S) has a comprehensive contribution to the normal operation and stability of organisms and is also present in environmental water samples and food deterioration. Thus, it is exceedingly promising and significant to develop a highly sensitive detection technique for tracing H2S. Inspired by this, we designed and synthesized a new fluorescent probe 2-[3-[2-[3-bromo-4-(2,4- dinitrobenzenesulfonate)] ethenyl]-5,5-dimethyl-2-cyclohexen-1-ylidene]propanedinitrile (SP-Br) for hydrosulfide ion detection by introducing bromine atom. Compared with reported H2S probes based on the same fluorescent parent, SP-Br has longer fluorescence emission (λem = 670 nm), shorter response time (3 min), lower detection limit (149 nM), and wider detection range (0-30 nM). SP-Br can emit weak yellow fluorescence, and the emission intensity at 670 nm is considerably enhanced in the presence of hydrosulfide ions. The identification mechanism of hydrosulfide ion by SP-Br was verified by high-resolution mass spectrometry, fluorescence, and UV-vis absorption spectroscopy. In addition, SP-Br has been successfully applied to the monitoring of actual water samples and beer samples and has certain development prospects and value in the fields of environmental pollution and food quality analysis.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124975, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154402

RESUMEN

Epilepsy is one of the most commonly-seen neurological disorders, and both endoplasmic reticulum stress (ERS) and oxidative stress (OS) have been demonstrated to be associated with epileptic seizures. As one of the three endogenous thiol-containing amino acids, cysteine (Cys) is recognized not only as an important biomarker of various biological processes but also widely used as a significant additive in the food industry. However, the exact role that Cys plays in ERS has not been well answered up to now. In this paper, we reported the first flavone-based fluorescent probe (namely BFC) with nice endoplasmic reticulum (ER)-targeting ability, which was capable of monitoring Cys in a fast response (3.0 min), large stokes shift (130 nm) and low detection limit (10.4 nM). The recognition mechanism of Cys could be attributed to the addition-cyclization reaction involving a Cys residue and an acrylate group, resulting in the release of the strong excited-state intramolecular proton transfer (ESIPT) emission molecule of benzoflavonol (BF). The low cytotoxicity and good biocompatibility of the probe BFC allowed for monitoring the fluctuation of endogenous Cys levels under both ERS and OS processes, as well as in zebrafish models of epilepsy. Quantitative determination of Cys with the probe BFC was also achieved in three different food samples. Additionally, a probe-immersed test strips integrated with a smartphone device was successfully constructed for on-site colorimetric detection of Cys. Undoubtedly, our work provided a valuable tool for tracking Cys levels in both an epilepsy model and real food samples.

5.
J Hazard Mater ; 477: 135364, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39111178

RESUMEN

The development of a fluorescent probe for pyriproxyfen (PPF) is crucial due to its potential threat to human health. However, the chemical inertness and low solubility of PPF present significant challenges for the detection of PPF in aqueous solutions using fluorescent probes. Herein, we have originally proposed a complex based on 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4 H-chromen-4-one (HOF) and serum albumin (SA) as a dual-mode fluorescent probe, HOF@SA. This probe utilizes an indicator displacement assay (IDA) to release the dye HOF from the probe at low PPF concentrations (< 10 µM) and embeds the free dye HOF into the micelle of PPF at high concentrations (> 10 µM). This results in dual-mode fluorescent response characteristics for PPF: a turn-off response at low concentrations and a ratiometric response at high concentrations. An investigation of sensing behavior of HOF@SA for PPF detection exhibits rapid response (< 60 s), high sensitivity (LOD ∼4.7 ppb), high selectivity, and excellent visual detection capability (from cyan to yellow). Moreover, with the aid of a portable device, this method enables to analyze PPF in environmental and food samples. These results promote the advancement of a fluorescent probe approach for PPF analysis in environment and food.


Asunto(s)
Colorantes Fluorescentes , Contaminación de Alimentos , Piridinas , Colorantes Fluorescentes/química , Piridinas/química , Piridinas/análisis , Contaminación de Alimentos/análisis , Albúmina Sérica/análisis , Espectrometría de Fluorescencia/métodos , Límite de Detección , Monitoreo del Ambiente/métodos
6.
Mikrochim Acta ; 191(9): 532, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134779

RESUMEN

Lipid droplets (LDs) dysfunction is closely associated with a multitude of diseases, including nonalcoholic fatty liver disease (NAFLD). Therefore, it is imperative to develop fluorescent probes that specifically target LDs for the early detection and diagnosis of NAFLD. In this study, a series of lipophilic fluorophores CZ1-CZ4 that feature a D-π-A configuration were designed and synthesized based on the carbazole and tricocyanofuran derivatives. The photophysical data revealed that all four probes exhibited large Stokes shifts (~ 120 nm) in high-polarity solvents (e.g., DMSO) and demonstrated enhanced fluorescence in solvents ranging from low-polarity (e.g., 1,4-Dioxane) to high-polarity. Notably, by utilizing probe CZ1, we could specifically visualize LDs and captured high-quality images, even eliminating the need for a time-consuming wash procedure. Moreover, CZ1 enabled monitoring of LDs dynamic changes in-real time within live cells, and importantly, it could be used to effectively distinguish normal and NAFLD tissues at both the organ and in vivo level. This exceptional property of probe CZ1 provides a practical tool for the diagnosis and intervention of NAFLD.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Gotas Lipídicas/química , Humanos , Animales , Imagen Óptica/métodos , Ratones , Células Hep G2
7.
Eur J Med Chem ; 277: 116778, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151274

RESUMEN

Myocardial infarction (MI), one of the leading causes of death worldwide, urgently needs further understanding of the pathological process and effective therapies. SO2 in endoplasmic reticulum in several cardiovascular diseases has been reported to be particularly important. However, the role of endogenous SO2 in endoplasmic reticulum in treating myocardial infarction is still ambiguous and needs to be elucidated. Herein, we developed TPA-HI-SO2 as the first endoplasmic reticulum-targeting fluorescent agent for specific imaging and detection of sulfur dioxide derivatives both in vitro and in vivo. TPA-HI-SO2 shows a highly sensitive and selective response to SO2 derivatives over other anions in aqueous solution with a satisfactory response time and detection limit. Furthermore, TPA-HI-SO2 decreased the SO2 concentration in H9C2 cells treated with H2O2 and in an MI mouse model. Most importantly, TPA-HI-SO2 protects H9C2 cells from H2O2-induced apoptosis and obviously protects against myocardial infarction in vivo through neutralization of endogenous SO2. Taken together, we developed the first ER-targeting ratiometric fluorescent probe for endogenous SO2 with excellent biocompatibility, high selectivity and sensitivity in this paper. More importantly, we demonstrated an obvious increase of the endogenous SO2 concentration in a myocardial infarction mouse model for the first time, which suggests that neutralization of endogenous SO2 in endoplasmic reticulum could be a promising therapeutic strategy for myocardial infarction.

8.
Food Chem ; 461: 140822, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151345

RESUMEN

Benzoyl peroxide (BPO) is widely used as a whitening agent in flour, but excessive intake of BPO will severely endanger human health. To quickly and accurately detect BPO on-site, we have rationally designed a novel fluorescent probe PTPY-BE with dual-reaction sites. PTPY-BE underwent a specific cascade reaction with BPO to achieve high-contrast fluorescence turn-on response along with significant achromic reaction. The probe has high sensitivity, excellent selectivity, strong anti-interference ability and low detection limit (LOD = 0.83 mg·kg-1) for BPO. Furthermore, a portable detection platform was fabricated, which offers the portability and color visualization of traditional test strips and the color recognition of a smart device, enabling on-site visualization and quantitative detection of BPO. This platform has been successfully used to determine BPO in real food samples with good recoveries (93.59% - 107.13%). Therefore, this platform possessed great prospect and potential application for the determination of BPO in food.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124974, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151399

RESUMEN

Alcoholic liver disease (ALD) is a chronic toxic liver injury caused by long-term heavy drinking. Due to the increasing incidence, ALD is becoming one of important medical tasks. Many studies have shown that the main mechanism of liver damage caused by large amounts of alcohol may be related to antioxidant stress. As an important antioxidant, cysteine (Cys) is involved in maintaining the normal redox balance and detoxifying metabolic function of the liver, which may be closely related to the pathogenesis of ALD. Therefore, it is necessary to develop a simple non-invasive method for rapid monitoring of Cys in liver. Thus, a near-infrared (NIR) fluorescent probe DCI-Ac-Cys which undergoes Cys triggered cascade reaction to form coumarin fluorophore is developed. Using the DCI-Ac-Cys, decreased Cys was observed in the liver of ALD mice. Importantly, different levels of Cys were monitored in the livers of ALD mice taking silybin and curcumin with the antioxidant effects, indicating the excellent therapeutic effect on ALD. This study provides the important references for the accurate diagnosis of ALD and the pharmacodynamic evaluation of silybin and curcumin in the treatment of ALD, and support new ideas for the pathogenesis of ALD.

10.
J Photochem Photobiol B ; 258: 112995, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096720

RESUMEN

Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.


Asunto(s)
Artritis Reumatoide , Colorantes Fluorescentes , Harmalina , Ácido Hipocloroso , Animales , Ácido Hipocloroso/metabolismo , Ratones , Colorantes Fluorescentes/química , Artritis Reumatoide/tratamiento farmacológico , Células RAW 264.7 , Harmalina/química , Harmalina/farmacología , FN-kappa B/metabolismo , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Humanos , Peganum/química
11.
Environ Pollut ; : 124766, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154880

RESUMEN

Hydrazine (N2H4) is a crucial chemical raw material extensively utilized in chemical production. However, due to its volatility, water solubility, and high toxicity, both the gaseous form and aqueous solution of N2H4 pose significant environmental risks by causing severe pollution that can adversely impact plants, microorganisms, and human health. Therefore, accurate detection of N2H4 in the environment is imperative for safeguarding public health. In this study, we synthesized a ratiometric fluorescent probe (BCaz-Cy2) based on Carbazole and Hemicyanine groups. This probe exhibits simple synthesis procedure, rapid response time, high sensitivity and selectivity as well as remarkable detection signals. It enables effective detection of N2H4 in various matrices such as water, food, soil and plant samples thereby significantly expanding the scope of applications for N2H4 probes.

12.
Luminescence ; 39(8): e4854, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103184

RESUMEN

In this work, a benzofuranone-derived fluorescent probe BFSF was developed for imaging the sulphite level in living hypoxia pulmonary cells. Under the excitation of 510 nm, BFSF showed a strong fluorescence response at 570 nm when reacted with sulphite. In the solution system, the constructed hypercapnia and serious hypercapnia conditions did not affect the fluorescence response. In comparison with the recently reported probes, BFSF suggested the advantages including rapid response, steady signal reporting, high specificity and low cytotoxicity upon living lung cells. Under a normal incubation atmosphere, BFSF realized the imaging of both exogenous and endogenous sulphite in living pulmonary cells. In particular, BFSF achieved imaging the decrease of the sulphite level under severe hypoxia as well as the recovery of the sulphite level with urgent oxygen supplement. With the imaging capability for the sulphite level in living pulmonary cells under hypoxia conditions, BFSF together with the information herein was meaningful for investigating the anaesthesia-related biological indexes.


Asunto(s)
Benzofuranos , Colorantes Fluorescentes , Pulmón , Sulfitos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Benzofuranos/química , Benzofuranos/síntesis química , Sulfitos/análisis , Sulfitos/química , Pulmón/diagnóstico por imagen , Pulmón/citología , Humanos , Hipoxia de la Célula , Imagen Óptica , Estructura Molecular
13.
Small ; : e2403071, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136420

RESUMEN

Regio-isomers are utilized to design innovative AIE luminogens (AIEgens) by regulating molecular aggregation behavior. However, relevant examples are limited, and the underlying mechanism is not fully understood. Herein, a regio-isomer strategy is used to develop AIEgens by precisely regulating the intermolecular interactions in the solid state. Among the regio-isomers it is investigated, ortho- isomer (DCM-O3-O7) exhibits enhanced AIE-activity than the para- isomer (DCM-P6), and the size of the ortho- substituents is crucial for the AIE performance. The underlying mechanism of the strategy is revealed using DFT calculations and single-crystal analysis. Dual hydrogen bonds (C─H∙∙∙π and C─H∙∙∙N) are generated between the molecules, which contributes to form dimers, tetramers, and 1D supramolecular structures in the crystal. By restricting intramolecular motion and attenuating π-π interactions, solid-state fluorescence is significantly enhanced. This strategy's effectiveness is validated using other donor-acceptor fluorophores, with DCM-O6 and its analogues serving as efficient probes for bioimaging applications. Notably, DCM-OM, which bears a morpholinyl instead of piperidinyl group, displayed strong lysosome-targeting ability and photostability; DCM-OP, incorporated by the hydrophilic quaternary ammonium group, exhibited wash-free imaging and cell membrane-targeting capabilities; and DCM-O6 nanoparticles enabled high-fidelity in vivo tumor imaging. Therefore, this strategy affords a general method for designing bright AIEgens.

14.
J Pharm Biomed Anal ; 250: 116411, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39141978

RESUMEN

Hydrogen polysulfide (H2Sn, n≥2), as a kind of active sulfur species (RSS), has become a hot topic in RSS. It can regulate the biological activity of many proteins through S-sulfhydrylation of cysteine residues (protein Cys-SSH), and has a protective effect on cells. Although there have been some studies on hydrogen polysulfide, its production, degradation pathway and regulation mechanism still need further be researched. In presented study, an original lysosome-localized fluorescent probe for determining H2Sn was developed utilizing rhodamine as the fluorogen. The probe used morpholine as the locating unit of lysosomes and chose 2-fluoro-5-nitrobenzoate as the recognizing group. Before adding H2Sn, the proposed probe displayed a spironolactone structure and emitted very weak fluorescence. After adding H2Sn, a conjugated xanthene was formed and the probe demonstrated green fluorescence. When the H2Sn concentration was varied from 6.0×10-7 mol·L-1 to 10.0×10-5 mol·L-1, the fluorescence intensity of the probe was linearly dependent on the H2Sn concentration. And the detection limit was 1.5×10-7 mol·L-1. The presented probe owned a fast response speed, good selectivity, excellent sensitivity and broad pH work scope. In addition, the probe had been well utilized to sense endogenic and exogenic H2Sn in lysosomes.

15.
Anal Chim Acta ; 1320: 342992, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142769

RESUMEN

Hydrogen sulfide (H2S) is a poisonous pollutant that endangers the environment, and H2S is also produced during food spoilage. Herein, we constructed a dicyanoisophorone-based near-infrared (NIR) fluorescent probe (DCID) to detect H2S. DCID exhibited significant turn-on fluorescence at 700 nm with a low limit of detection (LOD = 74 nM), large Stokes shift (220 nm), prominent selectivity, and response time (100 s) toward H2S. Importantly, the DCID probe had powerful applications in the detection of H2S in environmental samples and food spoilage. In addition, based on DCID-loaded test strips and combined a smartphone sensing platform, which provided a portable and convenient approach for the detection of H2S.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Límite de Detección , Contaminación de Alimentos/análisis , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis , Rayos Infrarrojos
16.
Luminescence ; 39(8): e4871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143684

RESUMEN

Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.


Asunto(s)
Cobre , Dopamina , Colorantes Fluorescentes , Grafito , Nanopartículas del Metal , Musa , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Dopamina/análisis , Grafito/química , Cobre/química , Cobre/análisis , Musa/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Espectrometría de Fluorescencia , Polímeros Impresos Molecularmente/química , Nitrilos/química , Límite de Detección , Compuestos de Nitrógeno
17.
Food Chem ; 460(Pt 3): 140527, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39121776

RESUMEN

Viscosity is one of the most important parameters of liquid foods and shows significant change during food spoilage. It is also an important component of the cell microenvironment and is closely associated with the development of liver injury. In this work, a viscosity-sensitive fluorescent probe named WZ-V based on the twisted intramolecular charge transfer (TICT) mechanism was successfully designed. WZ-V had a large Stokes shift, long wavelength emission, and the fluorescence intensity shows 290-fold enhancement in high viscosity. Probe WZ-V successfully detected viscosity changes caused by food thickeners, as well as in milk, orange juice, and lemonade spoilage processes. This provides a new tool for regulating the viscosity of liquid foods and monitoring viscosity changes during food spoilage. In addition, WZ-V has been successfully applied to image viscosity changes in liver injury, which provides an important reference for the study of liver diseases.

18.
J Fluoresc ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126608

RESUMEN

This study employed a green microwave synthesis technique to produce carbon quantum dots (CQDs) from araucaria heterophylla gum extract. The produced CQDs emit a distinct blue fluorescent light, contributing a remarkable quantum yield of 14.69%. Their average particle size measures at 1.62 ± 0.39 nm. Furthermore, these CQDs demonstrate excellent water solubility and maintain high fluorescence stability despite ionic strength, pH and time variations. Moreover, we present here for the first time that the synthesized CQDs demonstrate a rapid, exceptionally sensitive, and discerning fluorescence quenching phenomenon (IFE) concerning Cefprozil (CPR). The fluorescent probe was sensitive and specific with good linear relationships for CPR in the 0-18 µM range. The limit of detection for relationships for CPR was 2.51 µM. This study provides novel opportunities for producing high-quality luminescent CQDs that meet the requirements for various biological and environmental applications.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124889, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116595

RESUMEN

Pesticide residues are currently a prominent concern for food safety, and the development of a rapid, convenient, and accurate method for detecting pesticide residues is crucial to ensure the quality of agricultural products. In this study, a small molecule fluorescent probe based on biphenyl disulfonic acid (BDSA) was designed and prepared, and a sensitive, specific, and rapid detection method for diquat (DQ) and paraquat (PQ) was developed. The fluorescent molecule (BDSA-NDA) was synthesized through amide reaction between BDSA and 1,8-naphthalic anhydride, which exhibited cyan fluorescence (480 nm) when excited at 305 nm in aqueous solution with a large Stokes shift (>150 nm). Diquat and paraquat were found to quench the fluorescence of the probe through internal filtration effect (IFE) and photoelectron transfer (PET). Moreover, diquat possessed a large conjugated structure that emitted fluorescence at 340 nm which was assembled into a pair of ratio fluorescence with BDSA-NDA. Under optimized experimental conditions, the developed method achieved detection limits of 0.003 mg/L for diquat and 0.202 mg/L for paraquat. Furthermore, it could identify paraquat doped in diquat formulations. Additionally, when applied to environmental water samples as well as rice and urine, this detection method demonstrated good recovery rates (water: 96.2-100.6 %, rice: 93.5-101.9 %, urine: 96-103.7 %), meeting actual sample detection requirements effectively. This work presents a novel approach for rapidly detecting diquat and paraquat residues which holds practical application value in areas such as pesticide residue analysis in foods, environmental or clinical samples.

20.
Luminescence ; 39(8): e4857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129422

RESUMEN

Copper (Cu2+) is a metal chemical element closely related to human life and is widely used in many fields. However, with the discharge of copper wastewater, the water quality will be seriously affected, leading to excessive intake of Cu2+ and a variety of diseases. Hence, there is a pressing need for an effective detection method for Cu2+ in aqueous environments. Leveraging the remarkable attributes of GFP chromophores and indenone derivatives, we have created a novel colorimetric fluorescent probe P-Cu2+, tailored for efficient copper ion detection. The addition of Cu2+ causes the solution to visibly change from colorless to a pronounced yellow, enabling naked-eye detection and offering promise for real sample analysis.


Asunto(s)
Colorimetría , Cobre , Colorantes Fluorescentes , Cobre/química , Cobre/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Contaminantes Químicos del Agua/análisis , Agua/química , Indanos/química , Indanos/análisis , Iones/análisis , Iones/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA