Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; : 110179, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369849

RESUMEN

Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of the results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.

2.
Neuropharmacology ; 219: 109234, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36057317

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most common heritable form of neurodevelopmental disorder, which is caused by the loss of fragile X mental retardation protein (FMRP) expression. Despite the unceasing efforts to develop therapeutic agents against FXS based on the pathophysiological changes observed in animal models of FXS and human patients, therapeutic candidates including mGluR signaling modulators have failed to provide sufficient effects. Based on the recent successful demonstration of an endogenous polyamine, agmatine, to improve the autism-like symptoms in the valproic acid animal model of autism, we investigated the effects of agmatine against FXS symptoms using Fmr1 knockout (KO) mice. METHODS: We used male Fmr1 KO mice for behavioral tests such as marble burying, open-field test, memory tasks, social interaction tests and startle response to confirm the symptoms of FXS. We also checked the electrophysiological profile of neural activity in agmatine-treated Fmr1 KO mice. RESULTS: Agmatine reversed the compulsion, learning and memory deficits, hyperactivity, aberrant social interaction, and communication deficit in Fmr1 KO mice while it normalized the aberrant LTP and LTD in the hippocampus. CONCLUSIONS: The results highlight the potential of agmatine's novel disease-ameliorating effects in FXS, which warrants further studies to ascertain whether these findings translate into clinical effects in FXS patients.


Asunto(s)
Agmatina , Síndrome del Cromosoma X Frágil , Agmatina/farmacología , Agmatina/uso terapéutico , Animales , Carbonato de Calcio/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poliaminas , Ácido Valproico
3.
Eur J Pain ; 25(6): 1316-1328, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33619843

RESUMEN

BACKGROUND: Neuropathic pain is a complex condition characterized by sensory, cognitive and affective symptoms that magnify the perception of pain. The underlying pathogenic mechanisms are largely unknown and there is an urgent need for the development of novel medications. The endocannabinoid system modulates pain perception and drugs targeting the cannabinoid receptor type 2 (CB2) devoid of psychoactive side effects could emerge as novel analgesics. An interesting model to evaluate the mechanisms underlying resistance to pain is the fragile X mental retardation protein knockout mouse (Fmr1KO), a model of fragile X syndrome that exhibits nociceptive deficits and fails to develop neuropathic pain. METHODS: A partial sciatic nerve ligation was performed to wild-type (WT) and Fmr1KO mice having (HzCB2 and Fmr1KO-HzCB2, respectively) or not (WT and Fmr1KO mice) a partial deletion of CB2 to investigate the participation of the endocannabinoid system on the pain-resistant phenotype of Fmr1KO mice. RESULTS: Nerve injury induced canonical hypersensitivity in WT and HzCB2 mice, whereas this increased pain sensitivity was absent in Fmr1KO mice. Interestingly, Fmr1KO mice partially lacking CB2 lost this protection against neuropathic pain. Similarly, pain-induced depressive-like behaviour was observed in WT, HzCB2 and Fmr1KO-HzCB2 mice, but not in Fmr1KO littermates. Nerve injury evoked different alterations in WT and Fmr1KO mice at spinal and supra-spinal levels that correlated with these nociceptive and emotional alterations. CONCLUSIONS: This work shows that CB2 is necessary for the protection against neuropathic pain observed in Fmr1KO mice, raising the interest in targeting this receptor for the treatment of neuropathic pain. SIGNIFICANCE: Neuropathic pain is a complex chronic pain condition and current treatments are limited by the lack of efficacy and the incidence of important side effects. Our findings show that the pain-resistant phenotype of Fmr1KO mice against nociceptive and emotional manifestations triggered by persistent nerve damage requires the participation of the cannabinoid receptor CB2, raising the interest in targeting this receptor for neuropathic pain treatment. Additional multidisciplinary studies more closely related to human pain experience should be conducted to explore the potential use of cannabinoids as adequate analgesic tools.


Asunto(s)
Endocannabinoides , Neuralgia , Analgésicos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/genética , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2/genética
4.
Biol Chem ; 401(4): 497-503, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31702995

RESUMEN

Impaired energy metabolism may play a role in the pathogenesis of neurodevelopmental disorders including fragile X syndrome (FXS). We checked brain energy status and some aspects of cell bioenergetics, namely the activity of key glycolytic enzymes, glycerol-3-phosphate shuttle and mitochondrial respiratory chain (MRC) complexes, in the cerebral cortex of the Fmr1 knockout (KO) mouse model of FXS. We found that, despite a hyperactivation of MRC complexes, adenosine triphosphate (ATP) production via mitochondrial oxidative phosphorylation (OXPHOS) is compromised, resulting in brain energy impairment in juvenile and late-adult Fmr1 KO mice. Thus, an altered mitochondrial energy metabolism may contribute to neurological impairment in FXS.


Asunto(s)
Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Mitocondrias/metabolismo , Animales , Corteza Cerebral/patología , Síndrome del Cromosoma X Frágil/patología , Ratones , Ratones Noqueados
5.
J Biol Chem ; 294(52): 19889-19895, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31753916

RESUMEN

N6-Methyladenosine (m6A) is the most abundant post-transcriptional mRNA modification in eukaryotes and exerts many of its effects on gene expression through reader proteins that bind specifically to m6A-containing transcripts. Fragile X mental retardation protein (FMRP), an RNA-binding protein, has previously been shown to affect the translation of target mRNAs and trafficking of mRNA granules. Loss of function of FMRP causes fragile X syndrome, the most common form of inherited intellectual disability in humans. Using HEK293T cells, siRNA-mediated gene knockdown, cytoplasmic and nuclear fractions, RNA-Seq, and LC-MS/MS analyses, we demonstrate here that FMRP binds directly to a collection of m6A sites on mRNAs. FMRP depletion increased mRNA m6A levels in the nucleus. Moreover, the abundance of FMRP targets in the cytoplasm relative to the nucleus was decreased in Fmr1-KO mice, an effect also observed in highly methylated genes. We conclude that FMRP may affect the nuclear export of m6A-modified RNA targets.


Asunto(s)
Adenosina/análogos & derivados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Adenosina/metabolismo , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/química , ARN Interferente Pequeño/metabolismo
6.
Mol Brain ; 12(1): 56, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31200759

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the FMR1 gene and subsequent loss of its protein product, fragile X retardation protein (FMRP). One of the most robust neuropathological findings in post-mortem human FXS and Fmr1 KO mice is the abnormal increase in dendritic spine densities, with the majority of spines showing an elongated immature morphology. However, the exact mechanisms of how FMRP can regulate dendritic spine development are still unclear. Abnormal dendritic spines can result from disturbances of multiple factors during neurodevelopment, such as alterations in neuron numbers, position and glial cells. In this study, we undertook a comprehensive histological analysis of the cerebral cortex in Fmr1 KO mice. They displayed significantly fewer neuron and PV-interneuron numbers, along with altered cortical lamination patterns. In terms of glial cells, Fmr1 KO mice exhibited an increase in Olig2-oligodendrocytes, which corresponded to the abnormally higher myelin expression in the corpus callosum. Iba1-microglia were significantly reduced but GFAP-astrocyte numbers and intensity were elevated. Using primary astrocytes derived from KO mice, we further demonstrated the presence of astrogliosis characterized by an increase in GFAP expression and astrocyte hypertrophy. Our findings provide important information on the cortical architecture of Fmr1 KO mice, and insights towards possible mechanisms associated with FXS.


Asunto(s)
Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Animales , Recuento de Células , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipertrofia , Interneuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Oligodendroglía/metabolismo , Parvalbúminas/metabolismo
7.
Neurobiol Dis ; 130: 104482, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129085

RESUMEN

In fragile X syndrome, the absence of Fragile X Mental Retardation Protein (FMRP) is known to alter postsynaptic function, although alterations in presynaptic function also occur. We found that the potentiation of glutamate release induced by the ß adrenergic receptor (ßAR) agonist isoproterenol is absent in cerebrocortical nerve terminals (synaptosomes) from mice lacking FMRP (Fmr1 KO), despite the normal cAMP generation. The glutamate release induced by moderate stimulation of synaptosomes with 5 mM KCl was not potentiated in Fmr1 KO synaptosomes by isoproterenol, nor by stimulating the receptor associated signaling pathway with the adenylyl cyclase activator forskolin or with the Epac activator 8-pCPT. Hence, the impairment in the pathway potentiating release is distal to ßARs. Electron microscopy shows that Fmr1 KO cortical synapses have more docked vesicles than WT synapses, consequently occluding the isoproterenol response through which more SVs approach the active zone (AZ) of the plasma membrane. Weak stimulation of synaptosomes with the Ca2+ ionophore ionomycin recovered the release potentiation driven by forskolin and 8-pCPT but not with isoproterenol, revealing an impairment in the efficiency of receptor generated cAMP to activate the release potentiation pathway. Indeed, inhibiting cyclic nucleotide phosphodiesterase PDE2A with BAY 60-7550 reestablished isoproterenol mediated potentiation in Fmr1 KO synaptosomes. Thus, the lack of ß-AR mediated potentiation of glutamate release appears to be the consequence of an impaired capability of the receptor to mobilize SVs to the AZ and because of a decreased efficiency of cAMP to activate the signaling pathway that enhances neurotransmitter release.


Asunto(s)
Síndrome del Cromosoma X Frágil/metabolismo , Ácido Glutámico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinaptosomas/metabolismo
8.
Cereb Cortex ; 29(8): 3241-3252, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30137253

RESUMEN

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.


Asunto(s)
Comunicación Animal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Espinas Dendríticas/efectos de los fármacos , Síndrome del Cromosoma X Frágil/enzimología , Hipocampo/efectos de los fármacos , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Conducta Social , Triazinas/farmacología , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Espinas Dendríticas/patología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Ratas , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo
9.
Behav Brain Res ; 312: 212-8, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316341

RESUMEN

Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity.


Asunto(s)
Acetilcolinesterasa/metabolismo , Anisoles/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipercinesia/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Derivados de Alilbenceno , Animales , Cuerpo Estriado/enzimología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/psicología , Hipercinesia/prevención & control , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados
10.
Neuroscience ; 301: 520-8, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26117713

RESUMEN

Fragile X syndrome is a learning disability caused by excess of CGG repeats in the 5' untranslated region of the Fragile X gene (FMR1) silencing its transcription and translation. We used a murine model of this condition, Fmr1 knock-out mice (KO) to study acetylcholine (ACh) metabolism and compared it to that of wild-type control mice (WT). Brain endogenous ACh (D0ACh), free choline (D0Ch), their deuterated variants D4ACh and D4Ch and mole ratios (AChMR and ChMR) were measured by gas chromatography-mass spectrometry in the cerebral hemisphere, cerebral cortex, hippocampus and cerebellum, following D4Ch administration. Regression analysis indicated a significant decrease with age (negative slope) of D4ACh, AChMR, D4Ch and ChMR in WT mice. Age dependence was only present for D4ACh and AChMR in KO mice. Analysis of variance with age as covariate indicated a significant greater D4Ch in the cerebral cortex of KO females when compared to WT females. Contrasts between sexes within genotypes indicated lower D0Ch in cortex and cerebellum of female KO mice but not in WT and lower D4Ch in hippocampus of female KO and WT mice. In conclusion, after adjusting for age, D0ACh concentrations and synthesis from deuterium-labeled Ch were similar in KO and control WT mice in all brain regions. In contrast, significant changes in Ch dynamics were found in hippocampus and cerebral cortex of KO mice that might contribute to the pathogenesis of FXS.


Asunto(s)
Acetilcolina/metabolismo , Envejecimiento/fisiología , Encéfalo/metabolismo , Colina/metabolismo , Síndrome del Cromosoma X Frágil/patología , Caracteres Sexuales , Acetilcolina/farmacocinética , Animales , Encéfalo/efectos de los fármacos , Colina/farmacocinética , Deuterio/farmacocinética , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Dinámicas no Lineales , Factores de Tiempo
11.
Behav Brain Res ; 291: 164-171, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25979787

RESUMEN

Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Reacción de Prevención/fisiología , Endocannabinoides/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Memoria/fisiología , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Reacción de Prevención/efectos de los fármacos , Benzamidas/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Carbamatos/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Piperidinas/farmacología , Propofol/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de GABA-A/metabolismo , Conducta Social
12.
Biol Psychiatry ; 75(3): 189-97, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23910948

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most common genetic cause for intellectual disability. Fmr1 knockout (KO) mice are an established model of FXS. Chronic pharmacological inhibition of metabotropic glutamate receptor 5 (mGlu5) in these mice corrects multiple molecular, physiological, and behavioral phenotypes related to patients' symptoms. To better understand the pathophysiology of FXS and the effect of treatment, brain activity was analyzed using functional magnetic resonance imaging in relation to learning and memory performance. METHODS: Wild-type (WT) and Fmr1 KO animals receiving chronic treatment with the mGlu5 inhibitor CTEP or vehicle were evaluated consecutively for 1) learning and memory performance in the inhibitory avoidance and extinction test, and 2) for the levels of brain activity using continuous arterial spin labeling based functional magnetic resonance imaging. Neural activity patterns were correlated with cognitive performance using a multivariate regression analysis. Furthermore, mGlu5 receptor expression in brains of untreated mice was analyzed by autoradiography and saturation analysis using [(3)H]-ABP688. RESULTS: Chronic CTEP treatment corrected the learning deficit observed in Fmr1 KO mice in the inhibitory avoidance and extinction test and prevented memory extinction in WT and Fmr1 KO animals. Chronic CTEP treatment normalized perfusion in the amygdala and the lateral hypothalamus in Fmr1 KO mice and furthermore decreased perfusion in the hippocampus and increased perfusion in primary sensorimotor cortical areas. No significant differences in mGlu5 receptor expression levels between Fmr1 WT and KO mice were detected. CONCLUSIONS: Chronic mGlu5 inhibition corrected the learning deficits and partially normalized the altered brain activity pattern in Fmr1 KO mice.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/irrigación sanguínea , Modelos Animales de Enfermedad , Electrochoque/efectos adversos , Antagonistas de Aminoácidos Excitadores/farmacocinética , Extinción Psicológica/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Imidazoles/uso terapéutico , Ratones , Ratones Noqueados , Oximas/farmacocinética , Oxígeno/sangre , Piridinas/farmacocinética , Piridinas/uso terapéutico , Receptor del Glutamato Metabotropico 5/metabolismo , Tritio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA