Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
BMC Res Notes ; 17(1): 191, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982485

RESUMEN

OBJECTIVES: Much has been written about the utility of genomic databases to public health. Within food safety these databases contain data from two types of isolates-those from patients (i.e., clinical) and those from non-clinical sources (e.g., a food manufacturing environment). A genetic match between isolates from these sources represents a signal of interest. We investigate the match rate within three large genomic databases (Listeria monocytogenes, Escherichia coli, and Salmonella) and the smaller Cronobacter database; the databases are part of the Pathogen Detection project at NCBI (National Center for Biotechnology Information). RESULTS: Currently, the match rate of clinical isolates to non-clinical isolates is 33% for L. monocytogenes, 46% for Salmonella, and 7% for E. coli. These match rates are associated with several database features including the diversity of the organism, the database size, and the proportion of non-clinical BioSamples. Modeling match rate via logistic regression showed relatively good performance. Our prediction model illustrates the importance of populating databases with non-clinical isolates to better identify a match for clinical samples. Such information should help public health officials prioritize surveillance strategies and show the critical need to populate fledgling databases (e.g., Cronobacter sakazakii).


Asunto(s)
Bases de Datos Genéticas , Salmonella , Humanos , Salmonella/genética , Salmonella/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Microbiología de Alimentos , Estudios Prospectivos
2.
Front Vet Sci ; 11: 1395188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011320

RESUMEN

Aims: Clostridium perfringens is one of the major anaerobic pathogen causing food poisoning and animal enteritis. With the rise of antibiotic resistance and the restrictions of the use of antibiotic growth promoting agents (AGPs) in farming, Clostridium enteritis and food contamination have become more common. It is time-consuming and labor-intensive to confirm the detection by standard culture methods, and it is necessary to develop on-site rapid detection tools. In this study, a combination of recombinase polymerase amplification (RPA) and lateral flow biosensor (LFB) was used to visually detect C. perfringens in chicken meat and milk. Methods and results: Two sets of primers were designed for the plc gene of C. perfringens, and the amplification efficiency and specificity of the primers. Selection of primers produces an amplified fragment on which the probe is designed. The probe was combined with the lateral flow biosensor (LFB). The reaction time and temperature of RPA-LFB assay were optimized, and the sensitivity of the assay was assessed. Several common foodborne pathogens were selected to test the specificity of the established method. Chicken and milk samples were artificially inoculated with different concentrations (1 × 102 CFU/mL to 1 × 106 CFU/mL) of C. perfringens, and the detection efficiency of RPA-LFB method and PCR method was compared. RPA-LFB can be completed in 20 min and the results can be read visually by the LFB test strips. The RPA-LFB has acceptable specificity and the lowest detection limit of 100 pg./µL for nucleic acid samples. It was able to stably detect C. perfringens contamination in chicken and milk at the lowest concentration of 1 × 104 CFU/mL and 1 × 103 CFU/mL, respectively. Conclusion: In conclusion, RPA-LFB is specific and sensitive. It is a rapid, simple and easy-to-visualize method for the detection of C. perfringens in food and is suitable for use in field testing work.

3.
Infez Med ; 32(2): 241-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827827

RESUMEN

Aliarcobacter butzleri (formerly Arcobacter butzleri), is a newly recognized Campylobacter-like emerging foodborne pathogen worldwide, usually causing gastrointestinal symptoms in young children. A 4-year-old boy was admitted to the Department of Pediatrics, University Hospital of Split, Croatia, because of malnutrition, lost appetite and prolonged watery diarrhea. A comprehensive diagnostics, including biochemistry, haematology, allergology, microbiology and radiology, were performed. The only positive microbiology result was unexpected isolation of Aliarcobacter butzleri on selective media for Campylobacter, after 48 hours of incubation on 42°C, among microaerophilic atmosphere. Clinical course was favorable and after symptomatic therapy child was discharged in good clinical condition and normal peristalsis to home care, with the recommendation of taking high-protein preparations to improve nutritional status. In addition, we performed a literature review of clinical cases caused by Aliarcobacter butzleri infection. The first report of Aliarcobacter butzleri isolated from stool sample in a 4-year old boy in Croatia, along with other clinical reports in literature, highlights the importance of standardisation and improvement of microbiological analysis, especially implementation of new methods for the identification of emerging pathogens.

4.
Food Microbiol ; 122: 104552, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839232

RESUMEN

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Asunto(s)
Queso , Cloro , Listeria monocytogenes , Especies Reactivas de Oxígeno , Salmonella typhimurium , Rayos Ultravioleta , Queso/microbiología , Queso/análisis , Listeria monocytogenes/efectos de la radiación , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloro/farmacología , Irradiación de Alimentos/métodos , Microbiología de Alimentos , Viabilidad Microbiana/efectos de la radiación , Recuento de Colonia Microbiana
5.
Int J Food Microbiol ; 421: 110784, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38897047

RESUMEN

Bacillus cereus spores pose a significant concern during food processing due to their high resistance to environmental stress. Ohmic heating (OH) is an emerging and alternative heating technology with potential for inactivating such spores. This study evaluated the inactivation effects and the biological property changes of Bacillus cereus spores during OH treatments. OH effectively inactivated spores in milk, orange juice, broth, rice soup, and buffer solution in less time than oil bath heating (OB). A decrease in NaCl content improved spore inactivation at the same temperature. Spores were more sensitive to acid at 80-85 °C with OH treatment. Furthermore, OH at 10 V/cm and 50 Hz could reduce the spore resistance and inhibit an increase in spore hydrophobicity and spore aggregation. Both heating methods resulted in significant dipicolinic acid (DPA) leakage and damage to the cortex and inner membranes of the spores. However, OH at 10 V/cm and 50 Hz had the lowest DPA leakage and inflicted the least damage to the inner membrane. The damage to the spore's inner membrane was considered the primary reason for inactivation by OB and OH treatments. Still, OH at 10 V/cm and 50 Hz might also block the germination or outgrowth of treated spores or cause damage to the spore core.


Asunto(s)
Bacillus cereus , Calor , Esporas Bacterianas , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/efectos de la radiación , Bacillus cereus/crecimiento & desarrollo , Microbiología de Alimentos , Viabilidad Microbiana , Ácidos Picolínicos/farmacología , Manipulación de Alimentos/métodos
6.
MethodsX ; 12: 102776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883590

RESUMEN

The consumption of avocados and their products has been linked to outbreaks of illness caused by Salmonella enterica and Listeria monocytogenes. These pathogens have been isolated from avocados collected from farms and markets. After contact with the avocado epicarp, the cells of Salmonella and L. monocytogenes can become loosely attached (LA) by suspension in a film of water and attraction by electrostatic forces, or strongly attached (SA) by physical and irreversible attachment mechanisms. Attached cells may have greater resistance to agents used to decontaminate the fruit. The effect of applying wet steam (WS) to the epicarp of Hass avocados on the reduction LA and SA counts of Salmonella and L. monocytogenes was evaluated as a function of the exposure time. The inoculated avocados were washed and exposed to WS for 30, 45, and 60 s inside a treatment chamber. Salmonella was found to be more susceptible to WS than L. monocytogenes. The efficacy of steam in reducing LA and SA cell numbers was similar for both pathogens. Steaming avocados for 60 s reduced LA Salmonella and L. monocytogenes cells by 4.6 and 4.8 log CFU/avocado, whereas SA cells were decreased by 5.2 and 4.4 log CFU/avocado, respectively.•Steaming the avocados for 60 s produced the greatest reduction in loosely and strongly attached cells for both pathogens.•Wet steam treatment efficiently eliminated the loosely and strongly attached cells of both pathogens.•The Listeria monocytogenes attached cells showed greater resistance to steam treatment than Salmonella.

7.
Foods ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928827

RESUMEN

Raman spectroscopy for rapid identification of foodborne pathogens based on phenotype has attracted increasing attention, and the reliability of the Raman fingerprint database through genotypic determination is crucial. In the research, the classification model of four foodborne pathogens was established based on t-distributed stochastic neighbor embedding (t-SNE) and support vector machine (SVM); the recognition accuracy was 97.04%. The target bacteria named by the model were ejected through Raman-activated cell ejection (RACE), and then single-cell genomic DNA was amplified for species analysis. The accuracy of correct matches between the predicted phenotype and the actual genotype of the target cells was at least 83.3%. Furthermore, all anticipant sequencing results brought into correspondence with the species were predicted through the model. In sum, the Raman fingerprint database based on Raman spectroscopy combined with machine learning was reliable and promising in the field of rapid detection of foodborne pathogens.

8.
Anal Bioanal Chem ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916796

RESUMEN

Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.

10.
Front Vet Sci ; 11: 1392677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784655

RESUMEN

As the most common foodborne disease, number of campylobacteriosis decreased in Germany with the beginning of the COVID-19 pandemic in 2020. As the consumption of fresh chicken meat is a major risk factor for human infection, this study investigated the relationship between Campylobacter contamination levels on chicken carcasses and human cases in Lower Saxony, Germany and observed fresh chicken meat consumption patterns between 2018 and 2021 including the time of the COVID-19 pandemic. Campylobacter levels in broilers and human cases were classified based on the median and descriptively analysed per week using contingency tables. Before the COVID-19 pandemic (2018 and 2019), high Campylobacter contamination levels on neck samples and many human cases were more present, whereas with the beginning of the COVID-19 pandemic (2020 and 2021), low contamination levels on chicken carcasses and few human cases were more present. Lowest concordance between both parameters was shown in 2018 (Cohen's cappa coefficient: 0.37) and 2020 (0.38). The highest concordance was examined in 2021 (0.69). The private consumption of fresh chicken meat in Lower Saxony increased significantly with the beginning of the COVID-19 pandemic in 2020 by 63.9 tonnes compared to 2019 to an average of 453.5 tonnes per week. Public health measures and a reduced number of medical treatments have undoubtedly had an impact on less reported human cases during the COVID-19 pandemic. However, number of human cases remained at a low level in Germany in 2023 while chicken meat consumption increased. Thus, further risk assessments regarding the risk of campyloabcteriosis due to chicken meat consumption should include the country of origin, as the level of contamination of chicken carcasses varies between European countries.

11.
Int J Food Microbiol ; 419: 110745, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38795636

RESUMEN

Non-typhoid Salmonella enterica causes salmonellosis illness, and this bacterium can contaminate food throughout the production chain, including those that are consumed as raw products. Salmonella enterica can adhere to and internalize into fresh produce such as cherry tomatoes. It has been reported that lytic bacteriophages (phages) can be used as a biocontrol agent in the agricultural field, being an alternative for the control of Salmonella in red meat, fish, lettuce, and cabbage. The aim of this study was to characterize the two phages present in the PHA46 cocktail to determine their morphology, genome, host range, and resistance to different temperatures and pHs values; and later evaluate their lytic activity to reduce the adherence to and internalization of Salmonella enterica serovars Newport and Typhimurium into cherry tomatoes. In addition, in this work, we also explored the effect of the PHA46 cocktail on the virulence of S. Newport-45 and S. Typhimurium SL1344, recovered from the interior of cherry tomatoes, on the lifespan of the animal model Caenorhabditis elegans. The nematode C. elegans, recently has been used to test the virulence of Salmonella and it is easy to maintain and work with in the laboratory. The results revealed that the morphology obtained by Transmission Electron Microscopy of two phages from the PHA46 cocktail correspond to a myovirus, the analyses of their genomes sequences did not report virulence or antimicrobial resistance genes. The PHA46 sample is specific for 33 different serovars from different Salmonella strains and shows stability at 7 °C and pH 6. Also, the PHA46 cocktail was effective in reducing the adherence of S. Newport-45 and S. Typhimurium SL1344 to cherry tomatoes, at an average of 0.9 log10, respectively. Regarding internalized bacteria, the reduction was at an average of 1.2 log10, of the serovars mentioned above. The lifespan experiments in C. elegans showed by itself, that the PHA46 cocktail was harmless to the nematode, and the virulence from both Salmonella strains grown in vitro is diminished in the presence of the PHA46 cocktail. In conclusion, these results showed that the PHA46 cocktail could be a good candidate to be used as a biocontrol agent against Salmonella enterica.


Asunto(s)
Caenorhabditis elegans , Fagos de Salmonella , Salmonella typhimurium , Solanum lycopersicum , Solanum lycopersicum/microbiología , Animales , Caenorhabditis elegans/microbiología , Salmonella typhimurium/virología , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Virulencia , Salmonella enterica/virología , Microbiología de Alimentos , Agentes de Control Biológico , Especificidad del Huésped
12.
Microbiol Spectr ; 12(6): e0327623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38712931

RESUMEN

The unexpected foodborne outbreak in Singapore in 2015 has accentuated Group B Streptococcus (GBS, Streptococcus agalactiae) sequence type 283 as an emerging foodborne pathogen transmitted via the consumption of contaminated raw freshwater fish. Isolation-based workflows utilizing conventional microbiological and whole-genome sequencing methods are commonly used to support biosurveillance efforts critical for the control management of this emerging foodborne pathogen. However, these isolation-based workflows tend to have relatively long turnaround times that hamper a timely response for implementing risk mitigation. To address this gap, we have developed a metagenomics-based workflow for the simultaneous detection and genomic characterization of GBS in raw freshwater fish. Notably, our validation results showed that this metagenomics-based workflow could achieve comparable accuracy and potentially better detection limits while halving the turnaround time (from 2 weeks to 5 days) relative to an isolation-based workflow. The metagenomics-based workflow was also successfully adapted for use on a portable long-read nanopore sequencer, demonstrating its potential applicability for real-time point-of-need testing. Using GBS in freshwater fish as an example, this work represents a proof-of-concept study that supports the feasibility and validity of metagenomics as a rapid and accurate test methodology for the detection and genomic characterization of foodborne pathogens in complex food matrices. IMPORTANCE: The need for a rapid and accurate food microbiological testing method is apparent for a timely and effective foodborne outbreak response. This is particularly relevant for emerging foodborne pathogens such as Group B Streptococcus (GBS) whose associated food safety risk might be undercharacterized. By using GBS in raw freshwater fish as a case example, this study describes the development of a metagenomics-based workflow for rapid food microbiological safety testing and surveillance. This study can inform as a working model for various foodborne pathogens in other complex food matrices, paving the way for future methodological development of metagenomics for food microbiological safety testing.


Asunto(s)
Peces , Metagenómica , Streptococcus agalactiae , Flujo de Trabajo , Metagenómica/métodos , Animales , Peces/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/aislamiento & purificación , Agua Dulce/microbiología , Genoma Bacteriano/genética , Singapur , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos
13.
Meat Sci ; 214: 109534, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749270

RESUMEN

This study investigated the synergistic effects of ε-poly- L -lysine (ε-PL) and lysozyme against P. aeruginosa and L. monocytogenes biofilms. Single-culture biofilms of two bacteria were formed on silicone rubber (SR), stainless steel (SS), and beef surfaces and then treated with lysozyme (0.05-5 mg/mL) and ε-PL at minimum inhibitory concentrations (MICs) of 1 to 4 separately or in combination. On the SR surface, P. aeruginosa biofilm was reduced by 1.4 and 1.9 log CFU/cm2 within 2 h when treated with lysozyme (5 mg/mL) and ε-PL (4 MIC), respectively, but this reduction increased significantly to 4.1 log CFU/cm2 (P < 0.05) with the combined treatment. On beef surface, P. aeruginosa and L. monocytogenes biofilm was reduced by 4.2-5.0, and 3.3-4.2 log CFU/g when lysozyme was combined with 1, 2, and 4 MIC of ε-PL at 25 °C, respectively. Compared to 5 mg/mL lysozyme alone, the combined treatment with 1, 2, and 4 MIC of ε-PL on beef surface achieved additional reduction against P. aeruginosa biofilm of 0.5, 0.8, and 0.7 log CFU/g, respectively, at 25 °C. In addition, 0.25 mg/mL lysozyme and 0.5 MIC of ε-PL significantly (P < 0.05) suppressed the quorum-sensing (agrA) and virulence-associated (hlyA and prfA) genes of L. monocytogenes.


Asunto(s)
Biopelículas , Listeria monocytogenes , Muramidasa , Polilisina , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Muramidasa/farmacología , Biopelículas/efectos de los fármacos , Animales , Listeria monocytogenes/efectos de los fármacos , Polilisina/farmacología , Bovinos , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Carne Roja/microbiología , Microbiología de Alimentos , Acero Inoxidable , Antibacterianos/farmacología
14.
Animals (Basel) ; 14(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612274

RESUMEN

Pork is among the major sources of human salmonellosis in developed countries. Since the 1990s, different surveys and cross-sectional studies, both national and international (i.e., the baseline studies performed in the European Union), have revealed and confirmed the widespread non-typhoidal Salmonella serotypes in pigs. A number of countries have implemented control programs with different approaches and degrees of success. The efforts could be implemented either at farms, in post-harvest stages, or both. The current review revises the current state of the art in Salmonella in swine, the control programs ongoing or conducted in the past, and their strengths and failures, with particular attention to the weight of pre- and post-harvest control and the implications that both have for the success of interventions or mitigation after outbreaks. This review provides a novel perspective on Salmonella control in swine, a matter that still includes uncertainties and room for improvement as a question of public health and One Health.

15.
Diagn Microbiol Infect Dis ; 109(3): 116305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643675

RESUMEN

In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.


Asunto(s)
Composición de Base , Genoma Viral , Fagos de Salmonella , Salmonella enterica , Serogrupo , Genoma Viral/genética , Salmonella enterica/virología , Salmonella enterica/genética , Salmonella enterica/efectos de los fármacos , Fagos de Salmonella/genética , Fagos de Salmonella/clasificación , ADN Viral/genética , Análisis de Secuencia de ADN , Genómica/métodos , Sistemas de Lectura Abierta
16.
Mikrochim Acta ; 191(5): 253, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592400

RESUMEN

The development of distance-based paper analytical devices (dPADs) integrated with molecularly imprinted polymers (MIPs) to monitor Escherichia coli (E. coli) levels in food samples is presented. The fluidic workflow on the device is controlled using a designed hydrophilic bridge valve. Dopamine serves as a monomer for the formation of the E. coli-selective MIP layer on the dPADs. The detection principle relies on the inhibition of the E. coli toward copper (II) (Cu2+)-triggered oxidation of o-phenylenediamine (OPD) on the paper substrate. Quantitative detection is simply determined through visual observation of the residual yellow color of the OPD in the detection zone, which is proportional to E. coli concentration. The sensing exhibits a linear range from 25.0 to 1200.0 CFU mL-1 (R2 = 0.9992) and a detection limit (LOD) of 25.0 CFU mL-1 for E. coli detection. Additionally, the technique is highly selective with no interference even from the molecules that have shown to react with OPD to form oxidized OPD. The developed device demonstrates accuracy and precision for E. coli quantification in food samples with recovery percentages between 98.3 and 104.7% and the highest relative standard deviation (RSD) of 4.55%. T-test validation shows no significant difference in E. coli concentration measured between our method and a commercial assay. The proposed dPAD sensor has the potential for selective and affordable E. coli determination  in food samples without requiring sample preparation. Furthermore, this strategy can be extended to monitor other molecules for which MIP can be developed and integrated into paper-microfluidic platform.


Asunto(s)
Escherichia coli , Fenilendiaminas , Polímeros , Polímeros Impresos Molecularmente , Bioensayo
17.
Appl Environ Microbiol ; 90(5): e0029624, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647295

RESUMEN

The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.


Asunto(s)
Mataderos , Arcobacter , Pollos , Arcobacter/aislamiento & purificación , Arcobacter/genética , Arcobacter/clasificación , Animales , Pollos/microbiología , Microbiología de Alimentos , ARN Ribosómico 16S/genética , Aves de Corral/microbiología , Microbiota , Carne/microbiología , Contaminación de Alimentos/análisis
18.
Food Sci Biotechnol ; 33(7): 1633-1640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623427

RESUMEN

The efficacy of an in-package microbial inactivation method, combining H2O2 and atmospheric dielectric barrier discharge cold plasma (ADCP) treatments (H2O2-ADCP), in reducing contamination of Brassica oleracea (cabbage) slices was investigated. Cabbage slices were placed in a polyethylene terephthalate container with a H2O2-soaked polypropylene pad attached to the inside of the lid, followed by subjecting the closed container to ADCP treatment. The H2O2-ADCP treatment inactivated Escherichia coli O157:H7 and Listeria monocytogenes, resulting in reductions of 1.8 and 2.0 log CFU/g, respectively, which were greater than the sum of the inactivation effects observed with each individual treatment. The combined treatment decreased the count of Bacillus cereus spores and indigenous bacteria by 1.0 log spores/g and 1.3 log CFU/g, respectively. Moreover, the in-package method did not alter the moisture content or texture of cabbage slices. These results demonstrate the potential of H2O2-ADCP as a microbial decontamination method for packaged cabbage slices.

19.
Int J Food Microbiol ; 416: 110662, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38461734

RESUMEN

Salmonella Typhimurium is a foodborne pathogen often found in the poultry production chain. Antibiotics have been used to reduce S. Typhimurium contamination in poultry aviaries and improve chicken growth. However, antibiotics were banned in several countries. Alternatively, organic acids, such as propionic acid (PA), can control pathogens. This study determined the PA minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and mathematically modeled S. Typhimurium growth/inactivation kinetics under the influence of PA at different pH values (4.5, 5.5, and 6.5) which are within the pH range of the chicken gastrointestinal tract. The PA MIC against S. Typhimurium was pH-dependent, resulting in 5.0, 3.5 and 9.0 mM undissociated PA at pH 4.5, 5.5, and 6.5, respectively. The Baranyi and Roberts and the Weibull model fit growth and inactivation data well, respectively. Secondary models were proposed. The validated model predicted 3-log reduction of S. Typhimurium in 3 h at 68.2 mM of undissociated PA and pH 4.5. The models presented a good capacity to describe the kinetics of S. Typhimurium subjected to PA, representing a useful tool to predict PA antibacterial action depending on the pH.


Asunto(s)
Propionatos , Salmonella typhimurium , Animales , Recuento de Colonia Microbiana , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Pollos/microbiología , Cinética
20.
Res Vet Sci ; 171: 105247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554611

RESUMEN

To characterize wild-type bacteriophages and their effect on Salmonella Heidelberg intestinal colonization in broilers, phages combined in a cocktail were continuously delivered via drinking water since the first day after hatching. After challenge with a field strain, broilers were evaluated at regular intervals for S. Heidelberg and bacteriophages in tissues and cecum, and gross and microscopic lesions in organs. Phages were highly virulent against S. Heidelberg by efficiency of plating. One-step growth curves exhibited eclipse period from 20 to 25 min, whereas the lowest latent period and higher burst size found were 45 min and 54 PFU/cell, respectively. Bacteriophage whole genomic sequencing analyses revealed a lack of genes related to lysogeny, antimicrobial resistance, and virulence factors. Relevant gross or microscopic lesions were absent in tissues analyzed from treated broilers. Although numerically stable bacteriophage concentrations were detected in the cecal contents of treated broilers, no significant difference was found for the S. Heidelberg cecal load in comparison to the untreated group and for the prevalence of positive tissues throughout the evaluated period. The phages produced turbid plaques against some S. Heidelberg re-isolated from treated broilers, suggesting the evolving of a resistant subpopulation. Overall, the results provide new evidence of the safety and in vitro replication of such phages in S. Heidelberg. Nevertheless, continuous administration of the phage suspension most likely induced the development of bacteriophage-resistant mutants, which might have affected the in vivo effect. Therefore, a putative administration protocol should be based on other strategies, such as short-term therapy at pre-harvest age.


Asunto(s)
Bacteriófagos , Animales , Pollos , Salmonella , Intestinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...