Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Bioinformation ; 20(5): 583-586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132242

RESUMEN

Endodontic-periodontal diseases pose difficulties for the practitioner in diagnosing and predicting the success of the affected teeth. Therefore, it is of interest to correlate between periodontal infections and endodontic periodontal disorders. 50 patients of both sexes were included in this study. 28 of the 50 patients were men and 22 were women. Participants with a history of endodontic and periodontal lesions on the same tooth were chosen. A polymerase chain reaction experiment was carried out and relationships were formed. Data shows that isolates of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia were identified in 91% of the periodontium, 12% of the endodontium, and 51% of the endodontium, respectively. Targeted bacterial species were associated with periodontal and endodontic disorders that occurred concurrently. Therefore, it is plausible to speculate that dentinal tubules serve as a channel for the dissemination of microorganisms.

2.
Chin Herb Med ; 16(3): 422-434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072201

RESUMEN

Objective: Acute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of Lonicerae Japonicae Flos (LJF) and Forsythiae Fructus (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair Lonicerae Japonicae Flos-Forsythiae Fructus (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved. Methods: A total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1ß, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of Caspase-1 and IL-1ß proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1ß and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-ß, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR. Results: LF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75% as well as MPO activity by 88%. The efficacy of LF in reducing inflammatory factors IL-1ß, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated Caspase-1 and IL-1ß, as well as the release levels of LDH, compared to individual treatments. Similarly, the combination of 0.5 mg/mL LJF and FF could better inhibit the phosphorylation levels of STING and IRF3 and the production of IFN-ß, TNF-α, IL-6, and CXCL10 in response to ISD stimulation. Conclusion: The combination of LJF and FF increases the therapeutic effect on LPS-induced ALI, which may be mechanistically related to the combined effect inhibition of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NOD-like receptor family protein 3 (NLRP3) inflammasomes pathways by LJF and FF. Our study provides new medicine candidates for the clinical treatment of ALI.

3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000469

RESUMEN

Coronavirus can cause various diseases, from mild symptoms to the recent severe COVID-19. The coronavirus RNA genome is frequently mutated due to its RNA nature, resulting in many pathogenic and drug-resistant variants. Therefore, many medicines should be prepared to respond to the various coronavirus variants. In this report, we demonstrated that Forsythia viridissima fruit ethanol extract (FVFE) effectively reduces coronavirus replication. We attempted to identify the active compounds and found that actigenin from FVFE effectively reduces human coronavirus replication. Arctigenin treatment can reduce coronavirus protein expression and coronavirus-induced cytotoxicity. These results collectively suggest that arctigenin is a potent natural compound that prevents coronavirus replication.


Asunto(s)
Forsythia , Frutas , Furanos , Lignanos , Extractos Vegetales , Replicación Viral , Forsythia/química , Lignanos/farmacología , Replicación Viral/efectos de los fármacos , Furanos/farmacología , Humanos , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antivirales/farmacología , Antivirales/química , Animales , Chlorocebus aethiops , Células Vero
4.
Ultrason Sonochem ; 108: 106944, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878712

RESUMEN

With the proposal of the 2030 Agenda for Sustainable Development, the Chinese medicine extraction technology has been innovatively improved to prioritize low energy consumption, sustainability, and minimized organic solvent utilization. Forsythia suspensa (FS) possesses favorable pharmacological properties and is extensively utilized in traditional Chinese medicine. However, due to the limitations of the composition and extraction methods, its potential has not been fully developed. Thus, a combination of ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and ß-cyclodextrin extraction (ß-CDE) was employed to isolate and purify rutin, phillyrin, and forsythoside A from FS. The results demonstrated that the efficiency of extracting enzymatic and ultrasound assisted ß-cyclodextrin extraction (EUA-ß-CDE) was highly influenced by the temperature and duration of hydrolysis, as well as the duration of the extraction process. According to the results of the single-factor experiment, Box-Behnken design (BBD) in Response surface method (RSM) was used to optimize the experimental parameters to achieve the maximum comprehensive evaluation value (CEV) value. The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), calculation of power consumption and CO2 emission The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by HPLC, SEM, calculation of power consumption and CO2 emission. Then, the structural characteristics of EUA-ß-CDE of FS extract had significant interaction with ß-CD by Fourier infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In addition, EUA-ß-CDE extract has good antioxidant and anti-inflammatory activities. The establishment of EUA-ß-CDE of FS provides a new idea for the development and application of other sustainable extraction methods of traditional Chinese medicine.


Asunto(s)
Antiinflamatorios , Antioxidantes , Forsythia , Ondas Ultrasónicas , beta-Ciclodextrinas , Forsythia/química , beta-Ciclodextrinas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Fraccionamiento Químico/métodos , Enzimas/metabolismo , Temperatura , Glucósidos/aislamiento & purificación , Glucósidos/química , Glucósidos/farmacología , Hidrólisis , Rutina/aislamiento & purificación , Rutina/química , Rutina/farmacología
5.
Front Plant Sci ; 15: 1394799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887460

RESUMEN

This study evaluated the potential impact of climate change on the distribution of Forsythia suspensa, a valuable traditional Chinese medicinal plant, using the MaxEnt model integrated with Geographic Information System (GIS). By analyzing occurrence data from various databases and environmental variables including climate and soil factors, we forecasted the present and future (2050s and 2070s) habitat suitability of F. suspensa under different greenhouse gas emission scenarios (RCP8.5, RCP4.5, RCP2.6). Results indicated that the suitable habitats for F. suspensa were primarily located in North, East, Central, Northwest, and Southwest China, with a significant potential expansion of suitable habitats anticipated by the 2070s, particularly under the high emission scenario. The study identified precipitation and temperature as the primary environmental drivers impacting the distribution of F. suspensa. Furthermore, a northward shift in the centroid of suitable habitats under future climate scenarios suggested a potential migration response to global warming. This work provides crucial insights into the future conservation and cultivation strategies for F. suspensa amidst changing climatic conditions.

6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38931407

RESUMEN

This study evaluated the fruits of Forsythia suspensa (Lianqiao), an important economic crop, for the chemical components of its water and ethanol extracts, inhibitory effects on SARS-CoV-2 virus spike protein binding to ACE2, inhibition of ACE2 activity, and capacity to scavenge free radicals. A total of 42 compounds were tentatively identified in the extracts via HPLC-MS/MS analysis. The water extract showed a greater ACE2 inhibition but a weaker inhibition on SARS-CoV-2 spike protein binding to ACE2 than the ethanol extract on a per-botanical-weight-concentration basis. The phenolic content was found to be greater in the water extract at 45.19 mg GAE/g dry botanical weight than in the ethanol extract (6.89 mg GAE/g dry botanical). Furthermore, the water extract had greater scavenging capacities against HO●, DPPH●, and ABTS●+ at 448.48, 66.36, and 121.29 µmol TE/g dry botanical, respectively, as compared to that of the ethanol extract (154.04, 3.55, and 33.83 µmol TE/g dry botanical, respectively). These results warrant further research into, and the development of, the potential COVID-19-preventive applications of Lianqiao and its extracts.

7.
Front Oral Health ; 5: 1434217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872984

RESUMEN

Tannerella forsythia, a member of the "red complex" bacteria implicated in severe periodontitis, employs various survival strategies and virulence factors to interact with the host. It thrives as a late colonizer in the oral biofilm, relying on its unique adaptation mechanisms for persistence. Essential to its survival are the type 9 protein secretion system and O-glycosylation of proteins, crucial for host interaction and immune evasion. Virulence factors of T. forsythia, including sialidase and proteases, facilitate its pathogenicity by degrading host glycoproteins and proteins, respectively. Moreover, cell surface glycoproteins like the S-layer and BspA modulate host responses and bacterial adherence, influencing colonization and tissue invasion. Outer membrane vesicles and lipopolysaccharides further induce inflammatory responses, contributing to periodontal tissue destruction. Interactions with specific host cell types, including epithelial cells, polymorphonuclear leukocytes macrophages, and mesenchymal stromal cells, highlight the multifaceted nature of T. forsythia's pathogenicity. Notably, it can invade epithelial cells and impair PMN function, promoting dysregulated inflammation and bacterial survival. Comparative studies with periodontitis-associated Porphyromonas gingivalis reveal differences in protease activity and immune modulation, suggesting distinct roles in disease progression. T. forsythia's potential to influence oral antimicrobial defense through protease-mediated degradation and interactions with other bacteria underscores its significance in periodontal disease pathogenesis. However, understanding T. forsythia's precise role in host-microbiome interactions and its classification as a keystone pathogen requires further investigation. Challenges in translating research data stem from the complexity of the oral microbiome and biofilm dynamics, necessitating comprehensive studies to elucidate its clinical relevance and therapeutic implications in periodontitis management.

8.
Front Cell Infect Microbiol ; 14: 1421018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938884

RESUMEN

Introduction: Porphyromonas gingivalis and Porphyromonas endodontalis belong to the Bacteroidota phylum. Both species inhabit the oral cavity and can be associated with periodontal diseases. To survive, they must uptake heme from the host as an iron and protoporphyrin IX source. Among the best-characterized heme acquisition systems identified in members of the Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played by the hemophore-like HmuY (HmuYPg) protein. Methods: Theoretical analysis of selected HmuY proteins and spectrophotometric methods were employed to determine the heme-binding mode of the P. endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth phenotype and gene expression analysis of P. endodontalis were employed to reveal the importance of the HmuYPe and Hmu system for this bacterium. Results: Unlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron coordination, other known HmuY homologs use two methionines in this process. P. endodontalis HmuYPe is the first characterized representative of the HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe to sequester heme directly from serum albumin and Tannerella forsythia HmuYTf, the HmuY homolog which uses two methionines for heme-iron coordination. In contrast to HmuYPg, which sequesters heme directly from methemoglobin, HmuYPe may bind heme only after the proteolytic digestion of hemoglobin. Conclusions: We hypothesize that differences in components of the Hmu system and structure-based properties of HmuY proteins may evolved allowing different adaptations of Porphyromonas species to the changing host environment. This may add to the superior virulence potential of P. gingivalis over other members of the Bacteroidota phylum.


Asunto(s)
Proteínas Bacterianas , Hemo , Porphyromonas endodontalis , Porphyromonas gingivalis , Tannerella forsythia , Hemo/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Porphyromonas endodontalis/metabolismo , Porphyromonas endodontalis/genética , Humanos , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Hierro/metabolismo
9.
Respirol Case Rep ; 12(6): e01391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831800

RESUMEN

Odontogenic infections can spread to the respiratory tract. Despite the known role of Tannerella forsythia as the primary pathogen in periodontitis, the association between T. forsythia infection and risk of pneumonia or lung abscess remains unknown. In this report, we present a case of lung abscess caused by T. forsythia infection. The pathogen was detected by metagenomic next-generation sequencing (mNGS) in the bronchoalveolar lavage fluid of the patient. The clinical characteristics and possible mechanisms of the infection are discussed. T. forsythia is a conditional pathogen that can cause lung abscess in the presence of helper bacteria and reduced host immune status. The course of treatment should be personalized and might be longer than 3 months.

10.
Arch Oral Biol ; 164: 106004, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776586

RESUMEN

OBJECTIVE: The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN: The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS: Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS: Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.


Asunto(s)
Quimiocina CCL2 , Fusobacterium nucleatum , Interleucina-6 , Interleucina-8 , Ligamento Periodontal , Porphyromonas gingivalis , Tannerella forsythia , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/microbiología , Quimiocina CCL2/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/microbiología , Células Madre Mesenquimatosas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Periodontitis/microbiología , Adhesión Bacteriana , Microscopía Confocal , Células Cultivadas , Reacción en Cadena en Tiempo Real de la Polimerasa , Adhesión Celular , Coinfección/microbiología
11.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568794

RESUMEN

Green-stem forsythia (Forsythia viridissima), also known as golden bell, is cultivated widely in China as an early spring flowering shrub. In July 2020, yellow or white vein clearing symptoms on leaves were observed in approximate 15% golden bell plants along a landscape river in Ningbo city, Zhejiang province, China. Symptomatic leaves from six different plants were collected and pooled. Total RNA was extracted from about 200 mg pooled sample using TRIzol Reagent (Invitrogen, Carlsbad, USA) and used for high-throughput sequencing (HTS). The cDNA library was constructed using a TruSeq RNA Sample Preparation Kit (Illumina) and an Illumina NovaSeq 6000 platform was utilized to yield 150 nt paired-end reads. CLC Genomic Workbench 11 (QIAGEN) with default parameters were used for data analysis. A total of 41,604,174 paired-end reads were obtained, and 156,853 contigs (16 - 26,665 nt) were generated de novo and compared with sequences in the NCBI nt and nr database using BLASTn and BLASTx, respectively. A total of 197,277 reads were mapped to the citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) genome with an average coverage of 3191×. A contig of 8783 nt (excluding the poly(A) tail) was aligned to CLBV isolate Vib (accession No. OP751940) by BLASTn with the highest nt sequence identity of 99.7% and 99% query coverage, suggesting that the samples were infected with CLBV (Myung-Hwi Kim et al. 2023). No other virus was detected by this analysis. Subsequently, leaves of the six plants collected above, three plants with mild chlorotic symptoms and three plants without obvious symptoms were tested separately by RT-PCR and all were positive for CLBV. Sap from multiple symptomatic F. viridissima leaves was mechanically inoculated to Nicotiana benthamiana, N. tabacum and Datura stramonium in sextuplicate, but after two months, none of the inoculated plants had obvious symptoms and all of them tested negative for CLBV using RT-PCR. To determine the genome sequence of CLBV present in F. viridissima, a single sample from one plant was selected for genome validtion. The contig sequence was confirmed by Sanger sequencing of RT-PCR products amplified using CLBV-specific primers, and the 5' terminal sequence of the virus was determined using a commercial SUPERSWITCH RACE cDNA Synthesis Kit (Tiosbio, Beijing, China). The complete genomic sequence of CLBV isolated from F. viridissima was 8787 nts long, excluding the poly(A) tail, has the expected three predicted ORFs and was deposited in the GenBank database (accession no. OR766026). Phylogenetic analysis of different CLBV genome sequences from fruit trees and other hosts in GenBank using MEGA11 showed that the golden bell isolate was most closely related to isolate Vib (OP751940) from Viburnum lentago in South Korea, with which it was almost identical (99.7% complete nt sequence identity and >99% aa sequence identity in each of the three ORFs). Ten viruses have been previously reported from Forsythia spp. (Kaminska, M. 1985; Lee et al. 1997), but this is the first report of CLBV in this host. CLBV mainly infects citrus, kiwifruit and apple causing mosaic, chlorosis or yellow vein clearing symptoms, however, bud union disorder was observed in 'Nagami' kumquat infected by CLBV, which caused serious production losses (Cao et al. 2017; Li et al. 2018; Liu et al. 2019; Galipienso et al. 2001). Therefore, further investigation is needed to assess if F. viridissima can be an intermediate host to transfer CLBV to other crops.

12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 594-604, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597452

RESUMEN

OBJECTIVE: To compare the anti-inflammatory, antitumor and anti-bacterial effects of the single extract (in granules) and the prepared drug in pieces of Forsythia Suspense (Lianqiao, a traditional Chinese herbal medicine). METHODS: In zebrafish embryo models of CuSO4 exposure, tail transection and LPS microinjection-induced inflammation, the anti-inflammatory effects of 10 µg/mL DEX, single extract of Forsythia Suspense, and the water extract of the prepared drug (400, 600, and 800 µg/mL) were evaluated by observing neutrophil counts, RT- qPCR, HE staining and survival analysis. Zebrafish embryo models bearing different human tumor cell xenografts were used to assess the anti-tumor effect of the drugs in different dosage forms by fluorescence staining and HE staining. The microbroth dilution method was used to evaluate the antibacterial efficacy of the drugs. RESULTS: In the zebrafish embryo models of inflammation, both of the two dosage forms of Forsythia Suspense significantly inhibited neutrophil aggregation, reduced the mRNA expressions of TNF-α, IL-6, P38, Jnk, Erk and P65, and increased the survival rate of zebrafish. They both showed obvious inhibitory effects against xenografts of different human cancer cells including colon cancer cells (HCT116), pancreas adenocarcinoma cells (PANC-1), lung cancer cells (A549), liver cancer cells (Hep3B) and cervical carcinoma cells (Hela) in zebrafish embryos, and exhibited strong anti-bacterial effects at the concentration of 15.63 mg/mL. CONCLUSION: The two dosage forms of Forsythia Suspense have similar anti-inflammatory, antitumor and antibacterial effects, but their effects for inhibiting IL-6, P65, and Jnk mRNA expressions and HCT116 cell proliferation differ significantly at low doses in zebrafish.


Asunto(s)
Medicamentos Herbarios Chinos , Forsythia , Animales , Humanos , Pez Cebra , Interleucina-6 , Antiinflamatorios/farmacología , Inflamación , Antibacterianos/farmacología , ARN Mensajero
13.
Zhongguo Zhong Yao Za Zhi ; 49(4): 968-980, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621904

RESUMEN

This study aims to characterize and identify the chemical constituents in 11 parts of Forsythia suspensa by using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with a self-established chemical constituent database, including leaves, flowers, fruits, green F. suspensa, old F. suspensa, and seeds. The quality attributes and differences of different parts of F. suspensa were evaluated by principal component analysis, partial least square discriminant analysis, and other stoichiometric methods. A total of 79 compounds were identified, including 13 phenylethanol glycosides, 10 lignans, 12 flavonoids, 10 organic acids, 14 terpenoids, and 20 other types of compounds. Among them, 34 compounds were the main variables of difference between the different parts of F. suspensa, and the content of each component was relatively higher in the leaves and green F. suspensa. The LPS-induced inflammation model of RAW264.7 cells was applied to study the anti-inflammatory activity of the extracts of the different parts of F. suspensa and the main constituents. The results show that the extracts of green F. suspensa, flower, twig, and stem exhibited anti-inflammatory activity, and the constituents such as forsythoside A, phyllyrin, phillygenin, and(+)-pinoresinol-ß-D-glucopyranoside could significantly inhibit anti-inflammatory activity released by NO. The chemical constituent in different parts of F. suspensa is analyzed comprehensively, and the anti-inflammatory activity is evaluated in this study, which provides a reference for the development and comprehensive utilization of F. suspensa resources.


Asunto(s)
Forsythia , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Forsythia/química , Cromatografía Líquida de Alta Presión , Flavonoides , Antiinflamatorios/farmacología
14.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533900

RESUMEN

Ancient microbial genomes can illuminate pathobiont evolution across millenia, with teeth providing a rich substrate. However, the characterization of prehistoric oral pathobiont diversity is limited. In Europe, only preagricultural genomes have been subject to phylogenetic analysis, with none compared to more recent archaeological periods. Here, we report well-preserved microbiomes from two 4,000-year-old teeth from an Irish limestone cave. These contained bacteria implicated in periodontitis, as well as Streptococcus mutans, the major cause of caries and rare in the ancient genomic record. Despite deriving from the same individual, these teeth produced divergent Tannerella forsythia genomes, indicating higher levels of strain diversity in prehistoric populations. We find evidence of microbiome dysbiosis, with a disproportionate quantity of S. mutans sequences relative to other oral streptococci. This high abundance allowed for metagenomic assembly, resulting in its first reported ancient genome. Phylogenetic analysis indicates major postmedieval population expansions for both species, highlighting the inordinate impact of recent dietary changes. In T. forsythia, this expansion is associated with the replacement of older lineages, possibly reflecting a genome-wide selective sweep. Accordingly, we see dramatic changes in T. forsythia's virulence repertoire across this period. S. mutans shows a contrasting pattern, with deeply divergent lineages persisting in modern populations. This may be due to its highly recombining nature, allowing for maintenance of diversity through selective episodes. Nonetheless, an explosion in recent coalescences and significantly shorter branch lengths separating bacteriocin-carrying strains indicate major changes in S. mutans demography and function coinciding with sugar popularization during the industrial period.


Asunto(s)
Microbiota , Streptococcus mutans , Humanos , Filogenia , Streptococcus mutans/genética , Genómica , Metagenoma
15.
Cureus ; 16(2): e54909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38544640

RESUMEN

BACKGROUND: The glyA gene in Tannerella forsythia is attributed for its virulence by producing the enzyme serine hydroxymethyltransferase (SHMT), which plays a vital role in bacterial cell metabolism. OBJECTIVES: The study is thus aimed to determine the frequency of the glyA gene from the clinical strains of T. forsythia isolated from periodontitis patients. MATERIALS AND METHODS: Forty-five patients with varying degrees of periodontitis were included in the study, and the plaque samples collected from them were anaerobically processed by inoculating onto sterile anaerobic blood agar plates using a gaspak system, with incubation at 37°C for 5-7 days. The DNA was extracted from the obtained isolated colony, and PCR was performed to confirm the presence of the glyA gene. RESULTS: In total, 46.6% (n = 7) of the cases in group III aggressive periodontitis (n = 15) and 6.66% (n = 1) in group II stage II periodontitis (n = 15) showed the presence of T. forsythia, and among them, 57.14% (n = 4) showed the presence of the glyA gene.  Conclusion: The findings of the study showed that the glyA gene may be associated with the pathogenesis of T. forsythia and could be thus a novel candidate for the future theragnostic approach to combat periodontitis.

16.
Microbiol Mol Biol Rev ; 88(1): e0013123, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38305743

RESUMEN

SUMMARY: Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.


Asunto(s)
Bacteroides , Microbioma Gastrointestinal , Histidina , Hemo/química , Hemo/metabolismo , Hierro/metabolismo , Metionina
17.
FEBS Open Bio ; 14(3): 498-504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308430

RESUMEN

Periodontal disease is one of the most common forms of inflammation. It is currently diagnosed by observing symptoms such as gingival bleeding and attachment loss. However, the detection of biomarkers that precede such symptoms would allow earlier diagnosis and prevention. Aptamers are short oligonucleotides or peptides that fold into three-dimensional conformations conferring the ability to bind molecular targets with high affinity and specificity. Here we report the selection of aptamers that bind specifically to the bacterium Tannerella forsythia, a pathogen frequently associated with periodontal disease. Two aptamers with the highest affinity were examined in more detail, revealing that their binding is probably dependent on mirolysin, a surface-associated protease secreted by the T. forsythia type-9 secretion system. The aptamers showed minimal cross-reactivity to other periodontopathogens and are therefore promising leads for the development of new tools to study the composition of the periodontitis-associated dysbiotic bacteriome as well as inexpensive new diagnostic assays.


Asunto(s)
Periodontitis , Tannerella forsythia , Humanos , Periodontitis/diagnóstico , Periodontitis/microbiología , Inflamación , Péptido Hidrolasas , Oligonucleótidos
18.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358766

RESUMEN

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente
19.
Phytomedicine ; 125: 155336, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295660

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE: In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS: The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS: Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS: These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.


Asunto(s)
Colitis Ulcerosa , Colitis , Forsythia , Animales , Ratones , Polifenoles/farmacología , Polifenoles/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
J Tradit Complement Med ; 14(1): 109-120, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223810

RESUMEN

Purpose: Obstructive sleep apnea (OSA) is a chronic disease that affects 1%-6% of children. Our study aims to explore the effectiveness and clinical characteristics of integrative Traditional Chinese Medicine (ITCM) for pediatric OSA. Materials and methods: In this retrospective cohort study, we assessed differences of polysomnography (PSG) parameters and clinical characteristics between 2009 and 2020. Children <12 years old diagnosed with OSA (n = 508) were included and were categorized into ITCM cohort, western medicine (WM) cohort ,and surgery cohort. Outcomes were apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and body mass index (BMI). Results: There were 56 (11%), 324 (63.8%), and 128 (25.2%) patients in the ITCM, WM, and surgery cohorts. Among 17, 26, and 33 patients in the ITCM, WM, and surgery cohorts underwent follow-up PSG studies, respectively. In the ITCM follow-up cohort, AHI were significantly reduced (9.59 to 5.71, p < 0.05). BMI significantly increased in the WM follow-up cohort (19.46 to 20.50, p < 0.05) and the surgery follow-up cohort (18.04 to 18.85, p < 0.01). Comparing ITCM to WM cohort, a significant difference was found between the changes in RDI (ITCM: -6.78, WM: 0.51, p < 0.05) after treatment. Among ITCM follow-up cohort, the most prescribed TCM formula was Forsythia and Laminaria Combination. The most prescribed TCM herb was Ephedrae Herba. Conclusions: ITCM therapy can significantly reduce RDI and control BMI. We identified potential TCM treatments for pediatric OSA. Further study of the pharmacological mechanisms and clinical efficacy is warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA