Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Front Med (Lausanne) ; 11: 1406225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156688

RESUMEN

Introduction: The Screaming Mummy of Cairo Egyptian-Museum Store, is an anonymous woman with a wide-open mouth coded as CIT8, discovered beneath Theban Tomb 71 (TT71) which is the burial site of Senmut's relatives, the architect of 18th-Dynasty Queen Hatschepsut (1479-1458 BC). The study aims to evaluate if combining computed tomography (CT) with scientific investigations and archeological data of the Screaming Mummy CIT8 will reveal information about its physical appearance, health, cause of death, and mummification. Methods: We CT-scanned the mummy and created reconstructed images. Scanning-Electron-Microscope (SEM), Fourier-Transform-Infrared-Spectroscopy (FTIR), and X-ray-Diffraction-Analysis (XRD) were used to investigate mummy skin, hair, and wig samples. We compared our findings to previous data. Results: Computed tomography estimated the age of death to be 48.1 years ±14.6 based on the pubic symphyseal surface. CT detected mild-to-moderate teeth attrition, and joints degeneration. The desiccated brain and viscera remained in situ. FTIR revealed the wig is formed of midrib date palm that shows in CT as spiral low density fibers. The wig fibers are partially coated with a thick substance that is inspected as black consolidation and identified as crystalline by XRD, comparable to material found in an ancient wig-making workshop. FTIR showed that the skin, hair, and wig samples were treated with imported juniper resin had anti-bacterial and insecticidal properties. The skin and wig samples contained frankincense, and the hair sample contained henna. Discussion: Combining the advantages of paleoradiology to the scientific investigations, provided enhanced comprehension of the mummy CIT8 and ancient Egyptian wig structure and material. CT scanning non-invasively showed the mummy's inner and exterior morphology, and estimated the age of death as 48 years. CT evaluated the mummification technique based on retained viscera and absence of embalming packs. The scientific tests revealed expensive imported embalming materials, contradicting the traditional belief that the non-removal of the viscera implied poor mummification, resulting in careless embalmers sealing the mouth. The widely opened mouth could be a result of facial expression of suffering before death, fixed by cadaveric spasm. The study also explores how rigor mortis, tissue decomposition, burial techniques, and postmortem alterations may contribute to a mummy's screaming appearance.

2.
Emerg Microbes Infect ; 13(1): 2392659, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39137261

RESUMEN

Early detection of disseminating vancomycin-resistant Enterococcus faecium (VREfm) in ICU wards is crucial for outbreak identification and the implementation of prompt infection control measures. Genotypic methods like pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) are costly and time-consuming, hindering rapid response due to batch dependency. Fourier-transform infrared spectroscopy (FT-IR) offers the potential for real-time outbreak detection and reliable strain typing. We utilized FT-IR to identify clonal VREfm dissemination and compared its performance to PFGE and WGS. Between February through October 2023, an unusually high number of VREfm were recovered at a tertiary hospital in Barcelona. Isolates were examined for antimicrobial susceptibility, carriage of vanA/vanB genes and clonality was also studied using FT-IR, PFGE, and WGS. Routine FT-IR inspections revealed recurring VREfm clustering during the outbreak's initial weeks. In total, 104 isolates were recovered from 75 patients and from multiple wards. However, only one isolate was recovered from an environmental sample, suggesting the absence of environmental reservoirs. An ST80 vancomycin-resistant (vanA) E. faecium strain was the main strain responsible for the outbreak, although a few additional VREfm strains were also identified, all belonging to CC17. PFGE and cgMLST (WGS) yielded identical clustering results to FT-IR, and WGS confirmed vanA/vanB gene carriage in all VREfm isolates. Infection control measures led to a rapid decline in VREfm isolates, with no isolates detected in November. FT-IR spectroscopy offers rapid turnaround times, sensitivity, and reproducibility, comparable to standard typing methods. It proved as an effective tool for monitoring VREfm dissemination and early outbreak detection.


Asunto(s)
Infección Hospitalaria , Electroforesis en Gel de Campo Pulsado , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Secuenciación Completa del Genoma , Humanos , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/aislamiento & purificación , Enterococcus faecium/clasificación , Enterococos Resistentes a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/clasificación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , Secuenciación Completa del Genoma/métodos , Brotes de Enfermedades , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , España/epidemiología , Ligasas de Carbono-Oxígeno/genética , Antibacterianos/farmacología
3.
Biochim Biophys Acta Gen Subj ; 1868(11): 130690, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117048

RESUMEN

Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable ß-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.

4.
Toxicol Res (Camb) ; 13(4): tfae126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39132191

RESUMEN

Background: Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods. Methodology: In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL. Results: The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove. Conclusion: The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives.

5.
BMC Plant Biol ; 24(1): 769, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135189

RESUMEN

BACKGROUND: Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS: Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS: Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.


Asunto(s)
Fenotipo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de Componente Principal , Especies Introducidas , Hojas de la Planta/química , Fotosíntesis
6.
Artículo en Inglés | MEDLINE | ID: mdl-39145910

RESUMEN

Dissolved organic matter (DOM) in landfill leachate impacts the toxicity, bioavailability, and migration of heavy metals. The present study investigated the complexation of heavy metals (Cu2+ and Pb2+) with DOM from two landfill leachate samples, representing an old landfill site containing incineration residues and incombustible waste. The logarithms of the stability constant (log KM) and percentage of complexed fluorophores were calculated using both the Ryan-Weber non-linear model and the modified Stern-Volmer model, yielding good agreement. The log KM values (at pH = 6.0 ± 0.1) calculated using both methods for the two sampling points were 5.02-5.13 and 4.85-5.11 for Cu2+-DOM complexation, and 5.01-5.13 and 4.46-4.87 for Pb2+-DOM complexation, respectively. Log KM was slightly higher for binding of DOM with Cu2+ than Pb2+, and the quenching degree was stronger for complexation with Cu2+ (28.5-30.6% and 38.0-45.9%) than Pb2+ (6.5-7.1% and 10.0-15.4%) in both leachate samples. While log KM values were similar, differences in the contributions of functional groups and molecular composition led to varying degrees of quenching. This study reveals the potential for heavy metal binding by DOM in landfill leachate with a unique solid waste composition and emphasizes variations in fluorescence quenching between Cu2+ and Pb2+ despite similar log KM levels. These findings may be useful for assessing heavy metal behavior in landfill leachate and its impacts on the surrounding environment.

7.
Int J Biol Macromol ; 277(Pt 4): 134504, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116971

RESUMEN

The study aims to explore the effects of Eugenol (EUG) as an antioxidant on α-Chymotrypsin (α-Chy) and its interaction mechanism, with potential implications for new therapy development. The interaction between EUG and α-Chy was demonstrated through ultraviolet (UV) spectroscopy, which resulted in a shift in absorption with docking energies of -22.76 kJ/mol. An increase in fluorescence intensity indicated that the Trp residues moved to a less polar environment, which is consistent with the changes in accessible surface area (ASA) values. The presence of EUG led to a decrease in α-helix, ß-turn, and random coil structures as shown by circular dichroism (CD) and Fourier-transform infrared (FTIR) analysis. Additionally, there was a slight increase in ß-sheet structures, indicating a decrease in enzyme stability. However, tests for thermal stability showed a decrease in folding upon the introduction of EUG, which contradicted the results obtained from molecular dynamics (MD) simulations. The docking studies revealed that EUG forms hydrogen bonds and van der Waals forces with the enzyme, indicating the interaction mechanism. Kinetic studies confirmed that EUG acts as a mixed inhibitor. However, further research involving live organisms is necessary to fully understand its potential.

8.
Appl Spectrosc ; : 37028241267326, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095054

RESUMEN

Microplastics (MPs), an emerging pollutant, widely co-occur with polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the interaction between MPs and PAHs has been the focus of much attention in recent years. In this study, three types of MPs, i.e., polypropylene, polystyrene, and poly(vinyl chloride), with the same main chain were selected as the adsorbents, with phenanthrene (PHE) as the representative PAHs. The adsorption mechanisms were explored from the perspective of the molecular spectral level using a combination of Fourier transform infrared spectroscopy (FT-IR) with a two-dimensional correlation technique. The adsorption kinetics results showed that the adsorption of PHE on the three MPs was dominated by chemisorption. However, the FT-IR analysis results indicated that no new covalent bond was created during the adsorption process. Based on the above research, a generalized two-dimensional (2D) correlation spectral technique was employed to investigate the sequence of functional group changes during the adsorption process for different MPs. Furthermore, the hybrid 2D correlation spectral technique explored the effect of side groups attached to the main chain molecules of MPs on adsorption. The results showed that for all three MPs, the functional groups in the side chain have a higher affinity for PHE, which is due to their higher hydrophobicity. This study provides a feasible way to analyze the adsorption of pollutants on MPs, and the results are important for understanding the adsorption interaction between PAHs and MPs in the aquatic environment.

9.
Turk J Orthod ; 37(2): 91-97, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952245

RESUMEN

Objective: The quality of orthodontic forces in aligners is mainly influenced by their mechanical properties. At present, there is insufficient information on how environmental factors affect the mechanical function of aligners, and studies have shown that patients do not pay enough attention to removing aligners while eating and drinking. Therefore, in this study, we investigated the effect of different chemicals on the mechanical properties of thermoplastic materials. Methods: In this study, 175 thermoplastic samples from Easy-Vac gasket (3A Medes, Korea) were prepared, and their chemical composition, tensile strength, and hardness before and after exposure to solutions of orange juice, Cola, chlorhexidine mouthwash, and distilled water were measured. One-Way analysis of variance (ANOVA), Tamhane's test, and Tukey's test were used for statistical analysis. Results: The tensile strength of the sheets increased with continuous exposure to orange juice and chlorhexidine mouthwash, and their hardness decreased with continuous exposure to carbonated beverages. There was no change in the chemical composition of the samples after exposure to different chemicals. Conclusion: Although these changes are statistically significant, they do not have a significant effect on the result of aligner performance. Therefore, the only concern is the cariogenicity of orange juice and Cola during treatment with aligners and the administration of chlorhexidine mouthwash.

10.
Clin Exp Dent Res ; 10(4): e926, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970232

RESUMEN

OBJECTIVES: Electronic nicotine delivery systems (e-cigarette, pod, and vape) are currently among the tobacco consumption of adolescents and young adults. The aim is to show oral mucosa and saliva alterations related to vape. MATERIAL AND METHODS: A vape-user patient, presenting a white plaque in the posterior region of the hard palate, underwent clinical examination, sialometry, pH evaluation, and excisional biopsy of the white lesion. Molecular changes in saliva and vape liquid were analyzed by vibrational spectroscopy. RESULTS: The histopathological analyses showed hyperparakeratosis without dysplasia. Formaldehyde, ketones, and aromatic hydrocarbon species were identified in e-cig liquid by the FTIR. CONCLUSIONS: The use of vape may be related to the development of hyperkeratotic lesions in the oral mucosa as well as significantly modify the patient's salivary patterns as the vape liquid presents carcinogenic and cytotoxic components in its composition.


Asunto(s)
Mucosa Bucal , Saliva , Humanos , Saliva/química , Mucosa Bucal/patología , Sistemas Electrónicos de Liberación de Nicotina , Vapeo/efectos adversos , Masculino , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Adulto , Paladar Duro/patología , Adulto Joven , Biopsia
11.
Heliyon ; 10(12): e33221, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39005893

RESUMEN

Moxibustion has a long history of use as a traditional Chinese medicine therapy. Infrared radiation is an important and effective factor in moxibustion. Instead of the time-consuming and laborious process of holding moxa sticks in the hand, moxibustion devices are commonly used as moxibustion methods and tools in modern times. With the publication of the international standard of moxibustion devices (ISO18666:2021, Traditional Chinese Medicine - General requirements of moxibustion devices) published, moxibustion devices of various materials are now sold in the pharmacies and online stores. However, the influence of moxibustion devices on the therapeutic effect of moxibustion has not been studied. Therefore, this research was aimed to evaluate the infrared radiation of moxibustion devices, in order to select the moxibustion device that delivered infrared radiation closest to that of moxa stick combustion. The combination of combustion stability and infrared radiation intensity showed that cardboard tubes and silicone were better materials for moxibustion devices. In the mid-far infrared wave band, the moxibustion devices made from cardboard tubes and silica gels can better maintain the thermal effect generated by moxibustion and enable it to be more easily absorbed by the human body. The infrared radiation intensity of the cardboard moxibustion devices increased rapidly and steadily and could be maintained for the longest time. In conclusion, cardboard tubes are the better material for moxibustion devices with respect to infrared radiation.

12.
Front Microbiol ; 15: 1423741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011144

RESUMEN

Hexavalent chromium removal from the environment remains a crucial worldwide challenge. To address this issue, microbiological approaches are amongst the straightforward strategies that rely mainly on the bacteria's and fungi's survival mechanisms upon exposure to toxic metals, such as reduction, efflux system, uptake, and biosorption. In this work, scanning electron microscopy, energy-dispersive X-ray spectrophotometry, Fourier transform infrared spectroscopy, and zeta potential measurements were used to investigate the ability of chromium adsorption by Bacillus licheniformis, Bacillus megaterium, Byssochlamys sp., and Candida maltosa strains isolated from tannery wastewater. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy revealed alterations in the cells treated with hexavalent chromium. When exposed to 50 mg/L Cr6+, Bacillus licheniformis and Candida maltosa cells become rough, extracellular secretions are reduced in Bacillus megaterium, and Byssochlamys sp. cells are tightly bound and exhibit the greatest Cr weight percentage. In-depth analysis of Fourier transform infrared spectra of control and Cr-treated cells unveiled Cr-microbial interactions involving proteins, lipids, amino acids, and carbohydrates. These findings were supported by zeta potential measurements highlighting significant variations in charge after treatment with Cr(VI) with an adsorption limit of 100 mg/L Cr6+ for all the strains. Byssochlamys sp. showed the best performance in Cr adsorption, making it the most promising candidate for treating Cr-laden wastewater.

13.
Microorganisms ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39065082

RESUMEN

Recently Candida auris has emerged as a multi-resistant fungal pathogen, with a significant clinical impact, and is able to persist for a long time on human skin and hospital environments. It is a critical issue on the WHO fungal priority list and therefore it is fundamental to reinforce hospital surveillance protocols to limit nosocomial outbreaks. The purpose of this study was to apply Fourier transform infrared spectroscopy (FT-IR) to investigate the phylogenetic relationships among isolated strains from a C. auris outbreak at the University Intensive Care Unit of a Tertiary University hospital in Turin (Italy). To calculate a clustering cut-off, intra- and inter-isolate, distance values were analysed. The data showed the presence of a major Alfa cluster and a minor Beta cluster with a defined C. auris clustering cut-off. The results were validated by an external C. auris strain and Principal Component and Linear Discriminant Analyses. The application of FT-IR technology allowed to obtain important information about the phylogenetic relationships between the analysed strains, defining for the first time a "not WGS-based" clustering cut-off with a statistical-mathematical approach. FT-IR could represent a valid alternative to molecular methods for the rapid and cost-saving typing of C. auris strains with important clinical implications.

14.
Sci Total Environ ; 949: 175010, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053534

RESUMEN

To ensure unbiased tree-ring radiocarbon (14C) results, traditional pretreatments carefully isolate wood cellulose from extractives using organic solvents, among other chemicals. The addition of solvents is laborious, time-consuming, and can increase the risk of carbon contamination. Tropical woods show a high diversity in wood-anatomical and extractive composition, but the necessity of organic-solvent extraction for the 14C dating of these diverse woods remains untested. We applied a chemical treatment that excludes the solvent step on the wood of 8 tropical tree species sampled in South-America and Africa, with different wood-anatomical and extractive properties. We analyzed the success of the extractive removal along with several steps of the α-cellulose extraction procedure using Fourier Transform Infrared (FTIR) spectroscopy and further confirmed the quality of 14C measurements after extraction. The α-cellulose extracts obtained here showed FTIR-spectra free of signals from various extractives and the 14C results on these samples showed reliable results. The chemical method evaluated reduces the technical complexity required to prepare α-cellulose samples for 14C dating, and therefore can bolster global atmospheric 14C applications, especially in the tropics.


Asunto(s)
Celulosa , Madera , Madera/química , Celulosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Clima Tropical , Radioisótopos de Carbono/análisis , Árboles , Monitoreo del Ambiente/métodos , Datación Radiométrica/métodos
15.
Animal ; 18(8): 101235, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39053153

RESUMEN

Negative energy balance (NEB) is a serious problem in most dairy cows. It occurs most frequently after calving, when cows are unable to consume sufficient DM to meet their energy requirements during early lactation. During NEB, the breakdown of fat stores releases non-esterified fatty acids (NEFAs) into the bloodstream. High blood concentrations of NEFAs cause health problems such as ketosis, fatty liver syndrome, and enhanced susceptibility to infections. These issues may substantially increase premature culling from the herd. Serum NEFA concentrations are often used as a direct marker of energy metabolism. However, because the direct measurement of serum NEFAs is difficult under commercial conditions, alternative indicators, such as milk components, have been increasingly investigated for their use in estimating energy balance. The objectives of this study were to (1) evaluate the relationships between serum NEFA concentrations and selected milk components in cows from two farms during the first 5 weeks of lactation, and to (2) develop a model valid for both herds for predicting serum NEFA concentrations using milk components. A total of 121 lactating Holstein cows from two different farms were included in the experiment. Blood samples were collected for NEFA analysis on days 7 (± 3), 14 (± 3), 21 (± 3), and 35 (± 3) after calving. Composite milk samples were collected during afternoon milking on the same days as blood sampling. Concentrations of fat, protein, lactose, and milk fatty acids (FAs) were determined using Fourier-transform IR spectroscopy analysis. The strongest correlations (r > 0.43) were recorded between serum NEFAs and milk long-chain FAs, monounsaturated FAs, C18:0, and C18:1 within each farm and for both farms combined. Two prediction models for serum log(NEFA) using milk components as predictors were developed by stepwise regression. The prediction model with the best fit (R2 = 0.52) included days in milk, fat-to-protein ratio, and C18:1, C18:12 and C14:0 expressed as g/100 g of milk fat. An essential finding is that, despite different concentrations of NEFAs, and of most milk components observed in the evaluated herds, there were no significant interactions between farm and any of the FAs, so the same regression coefficients could be used for the prediction models in both farms. Validation of these findings in a greater number of herds would allow for the use of milk FAs to identify energy-imbalanced cows in herds under different farm conditions.


Asunto(s)
Metabolismo Energético , Ácidos Grasos no Esterificados , Lactancia , Leche , Animales , Bovinos , Femenino , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/análisis , Leche/química , Leche/metabolismo , Industria Lechera , Proteínas de la Leche/análisis , Lactosa/análisis , Granjas
16.
Environ Pollut ; 357: 124484, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960120

RESUMEN

Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 µm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.


Asunto(s)
Anomuros , Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Agua de Mar , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , India , Medición de Riesgo , Agua de Mar/química , Arena
17.
Matrix Biol Plus ; 23: 100155, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049903

RESUMEN

Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (µCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.

18.
Materials (Basel) ; 17(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38930317

RESUMEN

This work examines the influence of the degradation behaviors of biotic and abiotic conditions on three types of biodegradable products: cups from PLA and from cellulose, and plates from sugarcane. The main objective of this study was to evaluate if biodegradable products can be degraded in composts that were stabilized by backyard composting. Furthermore, the impact of crucial abiotic parameters (temperature and pH) for the degradation behaviors process was investigated. The changes in the biopolymers were analyzed by FTIR spectroscopy. This work confirmed that abiotic and biotic conditions are important for an effective disintegration of the investigated biodegradable products. Under abiotic conditions, the degradation behaviors of PLA were observable under both tested temperature (38 and 59 °C) conditions, but only at the higher temperature was complete disintegration observed after 6 weeks of incubation in mature compost. Moreover, our research shows that some biodegradable products made from cellulose also need additional attention, especially with respect to incorporated additives, as composting could be altered and optimal conditions in composting may not be achieved. This study shows that the disintegration of biodegradable products is a comprehensive process and requires detailed evaluation during composting. The results also showed that biodegradable products can also be degraded post composting and that microplastic pollution from biodegradable polymers in soil may be removed by simple physical treatments.

19.
Environ Pollut ; 358: 124433, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925216

RESUMEN

Wastewater treatment plants (WWTPs) are considered a significant microplastic discharge source. To evaluate the amount and characteristics of microplastics discharged from WWTPs in South Korea, we selected 22 municipal WWTPs nationally and investigated microplastics at each treatment stage. The mean microplastic removal efficiency by WWTPs was >99%, and most of the microplastics were removed by sedimentation with the second clarifier during wastewater treatment. Consequently, the microplastic removal efficiency of WWTPs did not significantly differ from that of the adopted wastewater treatment technology because a second clarifier was applied in most WWTPs. However, for WWTPs operating a tertiary treatment process, the removal efficiency was enhanced compared with that of WWTPs discharging after a second clarifier. Although the microplastic removal efficiency was high by WWTP, the discharge contribution to the water environment could not be ignored because of the amount of treated wastewater, resulting in an increase of 5.8-270.9 items/m3 of microplastics in the receiving water. The characteristics of microplastics in WWTPs, including their components, shape, and size, were also evaluated. The most detected components included polytetrafluoroethylene and polyester. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 70% of the microplastics detected in WWTPs was under 300 µm, implying that the size of microplastics required to control in WWTPs was much smaller than the defined size of microplastics. An evaluation of the correlation between other pollution factors and microplastic abundance did not reveal positive correlations, and microplastic occurrence was not affected by changing seasons, which may need to be evaluated with further studies. Research should also be performed on the effect of influent sources on the level of microplastic abundance and fate of ultrafine plastics in WWTPs.

20.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848847

RESUMEN

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Asunto(s)
Bacterias , Lino , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Lino/microbiología , Lignina/metabolismo , Lignina/química , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier , Filogenia , ARN Ribosómico 16S/genética , Pectinas/metabolismo , Celulosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA