Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Magn Reson Med ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367632

RESUMEN

PURPOSE: The objective of this study was to develop a new MRI technique for non-invasive, free-breathing imaging of glycogen in the human liver using the nuclear Overhauser effect (NOE). METHODS: The proposed method, called GraspNOE-Dixon, uses a novel MRI sequence that combines steady-state saturation-transfer preparation with multi-echo golden-angle radial stack-of-stars sampling. Multi-echo acquisition enables fat/water-separated imaging for quantification of water-specific NOE. Image reconstruction is performed using the improved golden-angle radial sparse parallel imaging (GRASP-Pro) technique to exploit spatiotemporal correlations in dynamic images. To evaluate the proposed technique, imaging experiments were first performed on glycogen phantoms, followed by in vivo studies involving healthy volunteers and patients with fatty liver disease. In addition, a comparative assessment of signal changes before and after a 12-h fasting period was performed. RESULTS: Evaluation experiments on glycogen phantoms showed a robust linear correlation between the NOE signal and glycogen concentration. In vivo experiments demonstrated motion-robust NOE-weighted images, with potential for further acceleration. In subjects with varying liver fat content, the fat/water separation approach resulted in distortion-free Z-spectra, enabling the quantification of glycogen NOE. An approximately one-third reduction in the NOE signal was observed following a 12-h fasting period, consistent with a decrease in glycogen level. CONCLUSION: This study introduces a clinically feasible imaging technique, GraspNOE-Dixon, for free-breathing volumetric multi-echo imaging of hepatic glycogen at 3 T. The motion robust imaging technique developed here may also have applications in other body areas beyond liver imaging.

2.
Magn Reson Imaging ; 114: 110242, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368522

RESUMEN

PURPOSE: In clinical practice, fetal gastrointestinal magnetic resonance imaging (MRI) encounters significant challenges. T1-weighted images are particularly susceptible to the effects of fetal and maternal movements compared to other weighted images, complicating the acquisition of satisfactory results. This study aimed to compare three fast 3D-T1 weighted gradient echo (GRE) sequences-free-breathing stack-of-stars VIBE (STAR-VIBE), breath-hold VIBE (BH-VIBE), and free-breathing multi-average VIBE (MA-VIBE)-for fetal gastrointestinal MRI in fetuses with both normal and abnormal gastrointestinal tracts between 21 and 36 weeks of gestation. METHODS: This study enrolled 67 pregnant women who underwent fetal abdominal MRI at our hospital between October 2022 and October 2023, during their gestational period of 21-36 weeks. Among these participants, 22 were suspected of having fetal gastrointestinal anomalies based on ultrasound findings, while the remaining 45 were considered to have normal fetal gastrointestinal development. All subjects underwent True fast imaging with steady-state precession sequence scanning along with three T1-weighted imaging techniques on a Siemens 1.5-T Aera scanner: STAR-VIBE, BH-VIBE, and MA-VIBE. Two radiologists evaluated image quality, intestinal clarity, and lesion conspicuity using a five-point scale where higher scores indicated superior performance for each technique; they were blinded to the acquisition schemes used. Interobserver variability assessments were also conducted. RESULTS: The free-breathing MA-VIBE sequence demonstrated significantly better performance than both STAR-VIBE and BH-VIBE in terms of fetal gastrointestinal MRI quality (3.81 ± 0.40 vs. 3.35 ± 0.70 vs. 2.90 ± 0.64; p < .05). The STAR-VIBE and BH-VIBE sequences exhibited moderate consistency (kappa = 0.586 and kappa = 0.527 respectively; P < .05), whereas the MA-VIBE sequence showed higher consistency (kappa = 0.712; P < .05). CONCLUSION: The free-breathing MA-VIBE sequence provided superior visualization for assessing fetal intestinal conditions compared to other methods employed in this study. On a 1.5 T MRI device, T1-weighted images based on the free-breathing MA-VIBE sequence can effectively overcome motion artifacts and compensate for the reduced signal-to-noise ratio caused by the application of acceleration techniques, thus significantly improving the quality of T1-weighted images.

3.
Magn Reson Med ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370883

RESUMEN

PURPOSE: To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. METHODS: An electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique. RESULTS: The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions. CONCLUSION: The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation.

4.
Asian Pac J Cancer Prev ; 25(9): 3301-3310, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39342610

RESUMEN

BACKGROUND: In the context of left breast cancer radiotherapy, long term cardiopulmonary toxicity has been well-documented, significant efforts have been undertaken to mitigate such toxicity by using 4D gating, deep inspiration breath-hold(DIBH) and active breath control(ABC) techniques. PURPOSE: To evaluate and compare the cardio-pulmonary radiation doses incurred during postmastectomy radiotherapy (PMRT) in two distinct breathing conditions such as DIBH and Free Breathing (FB), with a specific focus on the left chest wall with comprehensive regional nodal irradiation. MATERIALS AND METHODS: A prospective dosimetric study was conducted on 15 patients who received adjuvant loco-regional radiotherapy of chest-wall (CW), supraclavicular fossa(SCF), and internal mammary region(IMC), with or without axilla. Two sets of planning CT scans were taken in DIBH and FB conditions. The dosimetric difference between DIBH CT and FB CT plans analyzed using Wilcoxon signed-rank test, employing SPSS software version 21.0. RESULTS: Comparison of DIBH and FB parameters for target coverage revealed a statistically significant advantage with DIBH in SCF(D95, V90, p<0.017) and IMC(D98, V90 & V95, p<0.03). Dosimetric characteristics of heart and LAD exhibited statistically significant lower doses with DIBH (V20, V25, and Dmean, p<0.001) compared to FB plans. Lung doses were similar with no discernible advantage of one technique over the other. Other OARs such as contralateral breast (p=0.027) and esophagus (p=0.001) received lower doses with the DIBH technique while the spinal cord (p=0.691) and thyroid(p=0.496) showed no significant difference. Maximum heart distance (p= 0.001), central lung distance (p= 0.011) and Haller index (p= 0.001) exhibited statistical significance between the two techniques, whereas chest wall separation showed no significant statistical difference (p=0.629). CONCLUSION: DIBH demonstrates a substantial reduction in cardiac and LAD doses compared to the FB technique. This study underscores the efficacy of DIBH as a viable strategy for mitigating cardiac and LAD radiation doses in left-sided breast cancer patients undergoing PMRT of chest wall with comprehensive regional nodes.


Asunto(s)
Contencion de la Respiración , Corazón , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias de Mama Unilaterales , Humanos , Femenino , Estudios Prospectivos , Neoplasias de Mama Unilaterales/radioterapia , Neoplasias de Mama Unilaterales/cirugía , Planificación de la Radioterapia Asistida por Computador/métodos , Corazón/efectos de la radiación , Órganos en Riesgo/efectos de la radiación , Persona de Mediana Edad , Estudios de Seguimiento , Radioterapia Adyuvante/métodos , Radioterapia Adyuvante/efectos adversos , Pronóstico , Mastectomía , Ganglios Linfáticos/efectos de la radiación , Ganglios Linfáticos/patología , Tomografía Computarizada por Rayos X , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología , Inhalación , Adulto , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía
5.
Front Med (Lausanne) ; 11: 1418052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296894

RESUMEN

Introduction: Validation of functional free-breathing MRI involves a comparison to more established or more direct measurements. This procedure is cost-intensive, as it requires access to patient cohorts, lengthy protocols, expenses for consumables, and binds working time. Therefore, the purpose of this study is to introduce a synthetic lung model (ASYLUM), which mimics dynamic MRI acquisition and includes predefined lung abnormalities for an alternative validation approach. The model is evaluated with different registration and quantification methods and compared with real data. Methods: A combination of trigonometric functions, deformation fields, and signal combinations were used to create 20 synthetic image time series. Lung voxels were assigned either to normal or one of six abnormality classes. The images were registered with three registration algorithms. The registered images were further analyzed with three quantification methods: deformation-based or signal-based regional ventilation (JVent/RVent) analysis and perfusion amplitude (QA). The registration results were compared with predefined deformations. Quantification methods were evaluated regarding predefined amplitudes and with respect to sensitivity, specificity, and spatial overlap of defects. In addition, 36 patients with chronic obstructive pulmonary disease were included for verification of model interpretations using CT as the gold standard. Results: One registration method showed considerably lower quality results (76% correlation vs. 92/97%, p ≤ 0.0001). Most ventilation defects were correctly detected with RVent and QA (e.g., one registration variant with sensitivity ≥78%, specificity ≥88). Contrary to this, JVent showed very low sensitivity for lower lung quadrants (0-16%) and also very low specificity (1-29%) for upper lung quadrants. Similar patterns of defect detection differences between RVent and JVent were also observable in patient data: Firstly, RVent was more aligned with CT than JVent for all quadrants (p ≤ 0.01) except for one registration variant in the lower left region. Secondly, stronger differences in overlap were observed for the upper quadrants, suggesting a defect bias in the JVent measurements in the upper lung regions. Conclusion: The feasibility of a validation framework for free-breathing functional lung imaging using synthetic time series was demonstrated. Evaluating different ventilation measurements, important differences were detected in synthetic and real data, with signal-based regional ventilation assessment being a more reliable method in the investigated setting.

6.
J Cardiovasc Magn Reson ; : 101096, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278414

RESUMEN

BACKGROUND: Cardiovascular MRI (CMR) faces challenges due to the interference of bright fat signals in visualizing structures like coronary arteries. Effective fat suppression is crucial, especially when using whole-heart CMR techniques. Conventional methods often fall short due to rapid fat signal recovery, leading to residual fat content hindering visualization. Water-selective off-resonant radiofrequency (RF) pulses have been proposed but come with tradeoffs between pulse duration, which increases scan time, and increased RF energy deposit, which limits their applicability due to specific absorption rate (SAR) constraints. The study introduces a lipid-insensitive binomial off-resonant (LIBOR) RF pulse, which addresses concerns about SAR and scan time, and aims to provide a comprehensive quantitative comparison with published off-resonant RF pulses for CMR at 3T. METHODS: A short (1ms) LIBOR pulse, with reduced RF power requirements, was developed and implemented in a free-breathing respiratory-self-navigated 3D radial whole-heart CMR sequence at 3T. A binomial off-resonant rectangular (BORR) pulse with matched duration, as well as previously published lipid-insensitive binomial off-resonant excitation (LIBRE) pulses (1ms and 2.2ms), were implemented and optimized for fat suppression in numerical simulations and validated in volunteers (n=3). Whole-heart CMR was performed in volunteers(n=10) with all four pulses. The signal-to-noise ratio (SNR) of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat and the coronary vessel detection rates and sharpness were compared. RESULTS: Experimental results validated numerical findings and near homogeneous fat suppression was achieved with all four pulses. Comparing the short RF pulses (1ms), LIBOR reduced the RF power nearly two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR from cardiac scans, compared to LIBRE and BORR. The reduction in RF pulse duration (from 2.2ms to 1ms) shortened the whole-heart acquisition from 8.5min to 7min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. CONCLUSION: LIBOR pulses enabled whole-heart CMR under 7minutes at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR pulses. LIBOR is an excellent candidate to address SAR problems encountered in CMR sequences where fat suppression remains challenging and short RF pulses are required. AVAILABILITY OF DATA AND MATERIALS: An online repository containing the anonymized human MRI raw data, as well as RF pulse shapes used in this study is publicly available at: https://zenodo.org/records/8338079(PART 1: KNEE V1-V3, HEART V1-V5) https://zenodo.org/records/10715769 (PART 2: HEART V6-V10) Matlab code to 1) simulate the different RF pulses within a GRE sequence and 2) to read and display the anonymized raw data is available from: https://github.com/QIS-MRI/LIBOR_LIBRE_BORR_SimulationCode The compiled research sequence can be requested through the Teamplay platform of Siemens Healthineers.

7.
J Cardiovasc Magn Reson ; : 101100, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306195

RESUMEN

BACKGROUND: The diagnosis of myocarditis by CMR requires the use of T2 and T1 weighted imaging, ideally incorporating parametric mapping. Current 2D mapping sequences are acquired sequentially and involve multiple breath-holds resulting in prolonged scan times and anisotropic image resolution. We developed an isotropic free-breathing 3D whole-heart sequence which allows simultaneous T1 and T2 mapping and validated it in patients with suspected acute myocarditis. METHODS: Eighteen healthy volunteers and 28 patients with suspected myocarditis underwent conventional 2D T1 and T2 mapping with whole heart coverage and 3D joint T1/T2 mapping on a 1.5T scanner. Acquisition time, image quality, and diagnostic performance were compared. Qualitative analysis was performed using a 4-point Likert scale. Bland-Altman plots were used to assess the quantitative agreement between 2D and 3D sequences. RESULTS: The 3D T1/T2 sequence was acquired in 8mins 26s under free breathing, whereas 2D T1 and T2 sequences were acquired with breath holds in 11mins 44s (p=0.0001). All 2D images were diagnostic. For 3D images, 89% of T1 and 96% of T2 images were diagnostic with no significant difference in the proportion of diagnostic images for the 3D and 2D T1 (p=0.2482) and T2 maps (p=1.0000). Systematic bias in T1 was noted with biases of 102ms, 115ms, and 152ms for basal-apical segments, with a larger bias for higher T1 values. Good agreement between T2 values for 3D and 2D techniques was found (bias of 1.8ms, 3.9ms, and 3.6ms for basal-apical segments). The sensitivity and specificity of the 3D sequence for diagnosing acute myocarditis was 74% (95% confidence interval [CI] 49-91%) and 83% (36-100%) respectively, with an estimated c-statistic (95% CI) of 0.85 (0.79-0.91) and no statistically significant difference between the 2D and 3D sequences for the detection of acute myocarditis for T1 (p=0.2207) or T2 (p=1.0000). CONCLUSION: Free-breathing whole heart 3D joint T1/T2 mapping was comparable to 2D mapping sequences with respect to diagnostic performance, but with the added advantages of free-breathing, and shorter scan times. Further work is required to address the bias noted at high T1 values, but this did not significantly impact on diagnostic accuracy.

8.
Diagnostics (Basel) ; 14(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39272732

RESUMEN

Cardiac magnetic resonance imaging (MRI) is widely used for non-invasive assessment of cardiac morphology, function, and tissue characteristics due to its exquisite soft-tissue contrast. However, it remains time-consuming and requires proficiency, making it costly and limiting its widespread use. Traditional cardiac MRI is inefficient as signal acquisition is often limited to specific cardiac phases and requires complex view planning, parameter adjustments, and management of both respiratory and cardiac motion. Recent efforts have aimed to make cardiac MRI more efficient and accessible. Among these innovations, the free-running framework enables 5D whole-heart imaging without the need for an electrocardiogram signal, respiratory breath-holding, or complex planning. It uses a fully self-gated approach to extract cardiac and respiratory signals directly from the acquired image data, allowing for more efficient coverage in time and space without the need for electrocardiogram gating, triggering, navigators, or breath-holds. This review provides a comprehensive overview of the free-running framework, detailing its history, concepts, recent improvements, and clinical applications.

9.
Magn Reson Med ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285622

RESUMEN

PURPOSE: To compare phase-resolved functional lung (PREFUL) regional ventilation derived from a free breathing 3D UTE radial MRI acquisition to hyperpolarized 129Xe-MRI (Xe-MRI), conventional 2D multi-slice PREFUL MRI, and pulmonary function tests in pediatric cystic fibrosis (CF) lung disease. METHODS: Free-breathing 3D UTE and 2D multi-slice 1H MRI as well as Xe-MRI were acquired in 12 stable pediatric CF patients. Using PREFUL, regional ventilation (RVent) maps were calculated from the free-breathing data. Ventilation defect percentage (VDP) was determined from 3D and 2D RVent maps (2D VDPRVent and 3D VDPRVent, respectively) and Xe-MRI ventilation (VDPXe). VDP was calculated for the whole lung and for eight regions based on left/right, anterior/posterior, and superior/inferior divisions of the lung. Global and regional VDP was compared between the three methods using Bland-Altman analysis, linear mixed model-based correlation, and one-way analysis of variance and multiple comparisons tests. RESULTS: Global 3D VDPRVent, VDPXe, and 2D VDPRVent were all strongly correlated (all R2 > 0.62, p < 0.0001) and showed minimal, non-significant bias (all <2%, p > 0.05). Three dimensional and 2D VDPRVent significantly correlated to VDPXe in most of the separate lung regions (R2 = 0.18-0.74, p < 0.04), but showed lower inter-agreement. The superior/anterior lung regions showed the least agreement between all three methods (all p > 0.12). CONCLUSION: Absolute VDP assessed by 3D UTE PREFUL MRI showed good global agreement with Xe-MRI and 2D multi-slice PREFUL MRI in pediatric CF lung disease. Therefore, 3D UTE PREFUL MRI offers a sensitive and potentially more accessible alternative to Xe-MRI for regional volumetric evaluation of ventilation.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39247163

RESUMEN

Purpose: The aim of this study is to investigate, from a dosimetric perspective, whether helical Tomotherapy (HT) during free breathing (FB) can serve as an alternative technique for treating left-sided breast cancer patients who are unable to comply with the deep inspiration breath hold (DIBH) technique. Material and Methods: For this purpose, the CT images of 20 left breast-only cancer patients acquired in both FB and DIBH phases were utilized. The left breast was contoured as the target volume, while the heart, LAD, ipsilateral and contralateral lungs, and contralateral breast were contoured as organs at risk on the CT images obtained in both DIBH and FB. Planning with the volumetric modulated arc therapy (VMAT) technique was performed on the CT scans obtained in the DIBH (VMAT-DIBH), while planning with the HT technique was carried out on the CT scans obtained in the FB (HT-FB). Subsequently, dosimetric comparison of the plans were done in terms of target coverage and preservation of normal tissues. Results: Both techniques achieved the desired target coverage; however, in terms of D2, Vpres values, Conformity Number (CN), and Homogeneity Index (HI), the HT-FB technique was found to be superior. While the mean doses to the heart were similar for both techniques, doses to the LAD and left lung were found to be superior in plans generated with the HT-FB technique. When compared in terms of contralateral breast and right lung protection, VMAT-DIBH technique was found to be significantly superior. Conclusion: The treatment of left breast-only patients with the HT-FB technique has been observed to provide similar heart protection and better LAD and ipsilateral lung protection compared to the VMAT-DIBH technique without compromising target coverage. However, when the HT-FB technique is used, doses to the contralateral lung and contralateral breast should be carefully evaluated.

11.
NMR Biomed ; : e5262, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323100

RESUMEN

Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.

12.
Quant Imaging Med Surg ; 14(9): 6579-6589, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39281117

RESUMEN

Background: In liver diffusion-weighted imaging (DWI), single-shot echo-planar imaging (SS-EPI) sequences are susceptible to motion artifacts, resulting in image blurring and decreased lesion detection rates. This study aimed to develop and optimize a motion-corrected (MOCO) technique for liver DWI at 3 Tesla (3T). The technique incorporates motion correction, complex averaging, and a combination of a reparametrized sinc fatsat pulse with an optimized water excitation pulse. Methods: This prospective cross-sectional study performed at Fujian Medical University Union Hospital included 42 healthy volunteers who underwent four SS-EPI DWI sequences on a 3T magnetic resonance imaging (MRI) system between January 2023 and March 2023. The sequences included a navigator-triggered (NT) MOCO-DWI, two free-breathing (FB) MOCO-DWI, and an FB conventional DWI (FB cDWI) sequence. Motion correction and complex averaging were performed for both MOCO-DWI sequences, and fat suppression was achieved using either a sinc fatsat pulse with optimized water excitation or a conventional spectral attenuated inversion recovery (SPAIR) pulse. Liver signal-to-noise ratio (SNR) was measured at b=1,000 s/mm2. Qualitative parameters were independently evaluated by three radiologists using 5-point Likert scales. Quantitative parameters were assessed using the Kolmogorov-Smirnov test, and variance homogeneity was assessed using Levene's test. Regarding the qualitative analysis, the Friedman test was used to compare subjective scores among the four techniques. Results: The SNRs of the liver were significantly higher with FB MOCO-DWI compared to the other EPI DWI sequences at b=1,000 s/mm2 (P<0.05). In the superior-inferior direction, the SNRs of the inferior level of the liver were higher than those of the superior level in NT MOCO-DWI. The qualitative results showed significantly higher ratings for NT MOCO-DWI and FB MOCO-DWI compared to the other EPI DWI sequences at b=1,000 s/mm2 (P<0.05). Regarding the apparent diffusion coefficient (ADC) quantification, the ADC values of the left lobe were higher than those of the right lobe in all four techniques. Conclusions: The proposed EPI DWI technique, incorporating motion correction, complex averaging, and a modified fat suppression scheme using spectral fat saturation and binomial water excitation, was found to be clinically feasible for liver MRI. The FB MOCO-DWI sequence, with its superior SNR and excellent image quality, is recommended for liver DW imaging at 3T in clinical routine.

13.
J Magn Reson Imaging ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192381

RESUMEN

BACKGROUND: Quantitative parametric mapping is an increasingly important tool for noninvasive assessment of chronic liver disease. Conventional parametric mapping techniques require multiple breath-held acquisitions and provide limited anatomic coverage. PURPOSE: To investigate a multi-inversion spin and gradient echo (MI-SAGE) technique for simultaneous estimation of T1, T2, and T2* of the liver. STUDY TYPE: Prospective. SUBJECTS: Sixteen research participants, both adult and pediatric (age 17.5 ± 4.6 years, eight male), with and without known liver disease (seven asymptomatic healthy controls, two fibrotic liver disease, five steatotic liver disease, and two fibrotic and steatotic liver disease). FIELD STRENGTH/SEQUENCE: 1.5 T, single breath-hold and respiratory triggered MI-SAGE, breath-hold modified Look-Locker inversion recovery (MOLLI, T1 mapping), breath-hold gradient and spin echo (GRASE, T2 mapping), and multiple gradient echo (mGRE, T2* mapping) sequences. ASSESSMENT: Agreement between hepatic T1, T2, and T2* estimated using MI-SAGE and conventional parametric mapping sequences was evaluated. Repeatability and reproducibility of MI-SAGE were evaluated using a same-session acquisition and second-session acquisition. STATISTICAL TESTS: Bland-Altman analysis with bias assessment and limits of agreement (LOA) and intraclass correlation coefficients (ICC). RESULTS: Hepatic T1, T2, and T2* estimates obtained using the MI-SAGE technique had mean biases of 72 (LOA: -22 to 166) msec, -3 (LOA: -10 to 5) msec, and 2 (LOA: -5 to 8) msec (single breath-hold) and 36 (LOA: -43 to 120) msec, -3 (LOA: -17 to 11) msec, and 4 (LOA: -3 to 11) msec (respiratory triggered), respectively, in comparison to conventional acquisitions using MOLLI, GRASE, and mGRE. All MI-SAGE estimates had strong repeatability and reproducibility (ICC > 0.72). DATA CONCLUSION: Hepatic T1, T2, and T2* estimates obtained using an MI-SAGE technique were comparable to conventional methods, although there was a 12%/6% for breath-hold/respiratory triggered underestimation of T1 values compared to MOLLI. Both respiratory triggered and breath-hold MI-SAGE parameter maps demonstrated strong repeatability and reproducibility. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

14.
Magn Reson Med ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155406

RESUMEN

PURPOSE: To develop a Dixon-based B 0 $$ {\mathrm{B}}_0 $$ self-navigation approach to estimate and correct temporal B 0 $$ {\mathrm{B}}_0 $$ variations in radial stack-of-stars gradient echo imaging for quantitative body MRI. METHODS: The proposed method estimates temporal B 0 $$ {\mathrm{B}}_0 $$ variations using a B 0 $$ {\mathrm{B}}_0 $$ self-navigator estimated by a graph-cut-based water-fat separation algorithm on the oversampled k-space center. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator was employed to correct for phase differences between radial spokes (one-dimensional [1D] correction) and to perform a motion-resolved reconstruction to correct spatiotemporal pseudo-periodic B 0 $$ {\mathrm{B}}_0 $$ variations (three-dimensional [3D] correction). Numerical simulations, phantom experiments and in vivo neck scans were performed to evaluate the effects of temporal B 0 $$ {\mathrm{B}}_0 $$ variations on the field-map, proton density fat fraction (PDFF) and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ map, and to validate the proposed method. RESULTS: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations were found to cause signal loss and phase shifts on the multi-echo images that lead to an underestimation of T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ , while PDFF mapping was less affected. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator captured slowly varying temporal B 0 $$ {\mathrm{B}}_0 $$ drifts and temporal variations caused by respiratory motion. While the 1D correction effectively corrected B 0 $$ {\mathrm{B}}_0 $$ drifts in phantom studies, it was insufficient in vivo due to 3D spatially varying temporal B 0 $$ {\mathrm{B}}_0 $$ variations with amplitudes of up to 25 Hz at 3 T near the lungs. The proposed 3D correction locally improved the correction of field-map and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ and reduced image artifacts. CONCLUSION: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations particularly affect T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping in radial stack-of-stars imaging. The self-navigation approach can be applied without modifying the MR acquisition to correct for B 0 $$ {\mathrm{B}}_0 $$ drift and physiological motion-induced B 0 $$ {\mathrm{B}}_0 $$ variations, especially in the presence of fat.

15.
J Cardiovasc Magn Reson ; 26(2): 101065, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059610

RESUMEN

BACKGROUND: Quantitative myocardial tissue characterization with T1 and T2 parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T1 and T2 mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T1 and T2 mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA). METHODS: mSAVA acquires four volumes for simultaneous whole-heart T1 and T2 mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T1 and T2 values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients. RESULTS: Phantom T1 and T2 by mSAVA showed a strong correlation to reference sequences (R2 = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm3 could be achieved. Myocardial T1 and T2 of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T1 standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T2 standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T1 and T2 maps presented consistent findings in patients undergoing LGE. Myocardial T1 and T2 of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively. CONCLUSION: mSAVA is a fast 3D technique promising for clinical whole-heart T1 and T2 mapping.

16.
Radiol Cardiothorac Imaging ; 6(4): e230262, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39051878

RESUMEN

Purpose To investigate free-breathing thoracic bright-blood four-dimensional (4D) dynamic MRI (dMRI) to characterize aeration of parenchymal lung tissue in healthy children and patients with thoracic insufficiency syndrome (TIS). Materials and Methods All dMR images in patients with TIS were collected from July 2009 to June 2017. Standardized signal intensity (sSI) was investigated, first using a lung aeration phantom to establish feasibility and sensitivity and then in a retrospective research study of 40 healthy children (16 male, 24 female; mean age, 9.6 years ± 2.1 [SD]), 20 patients with TIS before and after surgery (11 male, nine female; mean age, 6.2 years ± 4.2), and another 10 healthy children who underwent repeated dMRI examinations (seven male, three female; mean age, 9 years ± 3.6). Individual lungs in 4D dMR images were segmented, and sSI was assessed for each lung at end expiration (EE), at end inspiration (EI), preoperatively, postoperatively, in comparison to normal lungs, and in repeated scans. Results Air content changes of approximately 6% were detectable in phantoms via sSI. sSI within phantoms significantly correlated with air occupation (Pearson correlation coefficient = -0.96 [P < .001]). For healthy children, right lung sSI was significantly lower than that of left lung sSI (at EE: 41 ± 6 vs 47 ± 6 and at EI: 39 ± 6 vs 43 ± 7, respectively; P < .001), lung sSI at EI was significantly lower than that at EE (P < .001), and left lung sSI at EE linearly decreased with age (r = -0.82). Lung sSI at EE and EI decreased after surgery for patients (although not statistically significantly, with P values of sSI before surgery vs sSI after surgery, left and right lung separately, in the range of 0.13-0.51). sSI varied within 1.6%-4.7% between repeated scans. Conclusion This study demonstrates the feasibility of detecting change in sSI in phantoms via bright-blood dMRI when air occupancy changes. The observed reduction in average lung sSI after surgery in pediatric patients with TIS may indicate postoperative improvement in parenchymal aeration. Keywords: MR Imaging, Thorax, Lung, Pediatrics, Thoracic Surgery, Lung Parenchymal Aeration, Free-breathing Dynamic MRI, MRI Intensity Standardization, Thoracic Insufficiency Syndrome Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Estudios Retrospectivos , Insuficiencia Respiratoria/diagnóstico por imagen , Respiración , Síndrome , Preescolar , Imagenología Tridimensional/métodos
17.
J Magn Reson Imaging ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036994

RESUMEN

BACKGROUND: Conventional liver magnetic resonance elastography (MRE) requires breath-holding (BH) to avoid motion artifacts, which is challenging for children. While radial free-breathing (FB)-MRE is an alternative for quantifying liver stiffness (LS), previous methods had limitations of long scan times, acquiring two slices in 5 minutes, and not resolving motion during reconstruction. PURPOSE: To reduce FB-MRE scan time to 4 minutes for four slices and to investigate the impact of self-gated (SG) motion compensation on FB-MRE LS quantification in terms of agreement, intrasession repeatability, and technical quality compared to conventional BH-MRE. STUDY TYPE: Prospective. POPULATION: Twenty-six children without fibrosis (median age: 12.9 years, 15 females). FIELD STRENGTH/SEQUENCE: 3 T; Cartesian gradient-echo (GRE) BH-MRE, research application radial GRE FB-MRE. ASSESSMENT: Participants were scanned twice to measure repeatability, without moving the table or changing the participants' position. LS was measured in areas of the liver with numerical confidence ≥90%. Technical quality was examined using measurable liver area (%). STATISTICAL TESTS: Agreement of LS between BH-MRE and FB-MRE was evaluated using Bland-Altman analysis for SG acceptance rates of 40%, 60%, 80%, and 100%. LS repeatability was assessed using within-subject coefficient of variation (wCV). The differences in LS and measurable liver area were examined using Kruskal-Wallis and Wilcoxon signed-rank tests. P < 0.05 was considered significant. RESULTS: FB-MRE with 60% SG achieved the closest agreement with BH-MRE (mean difference 0.00 kPa). The LS ranged from 1.70 to 1.83 kPa with no significant differences between BH-MRE and FB-MRE with varying SG rates (P = 0.52). All tested methods produced repeatable LS with wCV from 4.4% to 6.5%. The median measurable liver area was smaller for FB-MRE (32%-45%) than that for BH-MRE (91%-93%) (P < 0.05). DATA CONCLUSION: FB-MRE with 60% SG can quantify LS with close agreement and comparable repeatability with respect to BH-MRE in children. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

18.
NMR Biomed ; 37(11): e5209, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38994704

RESUMEN

Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.


Asunto(s)
Medios de Contraste , Voluntarios Sanos , Pulmón , Imagen por Resonancia Magnética , Respiración , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Protones , Anciano , Relación Señal-Ruido
19.
MAGMA ; 37(4): 583-602, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039272

RESUMEN

OBJECTIVE: To review the recent advancements in free-breathing MRI techniques for proton-density fat fraction (PDFF) and R2* quantification in the liver, and discuss the current challenges and future opportunities. MATERIALS AND METHODS: This work focused on recent developments of different MRI pulse sequences, motion management strategies, and reconstruction approaches that enable free-breathing liver PDFF and R2* quantification. RESULTS: Different free-breathing liver PDFF and R2* quantification techniques have been evaluated in various cohorts, including healthy volunteers and patients with liver diseases, both in adults and children. Initial results demonstrate promising performance with respect to reference measurements. These techniques have a high potential impact on providing a solution to the clinical need of accurate liver fat and iron quantification in populations with limited breath-holding capacity. DISCUSSION: As these free-breathing techniques progress toward clinical translation, studies of the linearity, bias, and repeatability of free-breathing PDFF and R2* quantification in a larger cohort are important. Scan acceleration and improved motion management also hold potential for further enhancement.


Asunto(s)
Hígado , Imagen por Resonancia Magnética , Respiración , Humanos , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Tejido Adiposo/diagnóstico por imagen , Niño , Hepatopatías/diagnóstico por imagen , Protones , Interpretación de Imagen Asistida por Computador/métodos , Movimiento (Física) , Hierro , Contencion de la Respiración , Algoritmos , Voluntarios Sanos
20.
Magn Reson Med ; 92(5): 2021-2036, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38968132

RESUMEN

PURPOSE: To reduce the ringing artifacts of the motion-resolved images in free-breathing dynamic pulmonary MRI. METHODS: A golden-step based interleaving (GSI) technique was proposed to reduce ringing artifacts induced by diaphragm drifting. The pulmonary MRI data were acquired using a superior-inferior navigated 3D radial UTE sequence in an interleaved manner during free breathing. Successive interleaves were acquired in an incoherent fashion along the polar direction. Four-dimensional images were reconstructed from the motion-resolved k-space data obtained by retrospectively binning. The reconstruction algorithms included standard nonuniform fast Fourier transform (NUFFT), Voronoi-density-compensated NUFFT, extra-dimensional UTE, and motion-state weighted motion-compensation reconstruction. The proposed interleaving technique was compared with a conventional sequential interleaving (SeqI) technique on a phantom and eight subjects. RESULTS: The quantified ringing artifacts level in the motion-resolved image is positively correlated with the quantified nonuniformity level of the corresponding k-space. The nonuniformity levels of the end-expiratory and end-inspiratory k-space binned from GSI data (0.34 ± 0.07, 0.33 ± 0.05) are significantly lower with statistical significance (p < 0.05) than that binned from SeqI data (0.44 ± 0.11, 0.42 ± 0.12). Ringing artifacts are substantially reduced in the dynamic images of eight subjects acquired using the proposed technique in comparison with that acquired using the conventional SeqI technique. CONCLUSION: Ringing artifacts in the motion-resolved images induced by diaphragm drifting can be reduced using the proposed GSI technique for free-breathing dynamic pulmonary MRI. This technique has the potential to reduce ringing artifacts in free-breathing liver and kidney MRI based on full-echo interleaved 3D radial acquisition.


Asunto(s)
Algoritmos , Artefactos , Diafragma , Imagenología Tridimensional , Pulmón , Imagen por Resonancia Magnética , Fantasmas de Imagen , Respiración , Humanos , Diafragma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Adulto , Masculino , Femenino , Movimiento (Física) , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA