Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1274838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877122

RESUMEN

Dendroctonus-bark beetles are natural components and key ecological agents of coniferous forests. They spend most of their lives under the bark, where they are exposed to highly toxic terpenes present in the oleoresin. Cytochrome P450 (CYP) is a multigene family involved in the detoxification of these compounds. It has been demonstrated that CYP6DE and CYP6DJ subfamilies hydroxylate monoterpenes, whose derivatives can act as pheromone synergist compounds or be pheromones themselves in these insects. Given the diversity and functional role of CYPs, we investigated whether these cytochromes have retained their function throughout the evolution of these insects. To test this hypothesis, we performed a Bayesian phylogenetic analysis to determine phylogenetic subgroups of cytochromes in these subfamilies. Subgroups were mapped and reconciled with the Dendroctonus phylogeny. Molecular docking analyses were performed with the cytochromes of each subgroup and enantiomers of α-pinene and ß-pinene, (+)-3-carene, ß-myrcene and R-(+)-limonene. In addition, functional divergence analysis was performed to identify critical amino acid sites that influence changes in catalytic site conformation and/or protein folding. Three and two phylogenetic subgroups were recovered for the CYP6DE and CYP6DJ subfamilies, respectively. Mapping and reconciliation analysis showed different gain and loss patterns for cytochromes of each subgroup. Functional predictions indicated that the cytochromes analyzed are able to hydroxylate all monoterpenes; however, they showed preferential affinities to different monoterpenes. Functional divergence analyses indicated that the CYP6DE subfamily has experimented type I and II divergence, whereas the CYP6DJ subfamily has evolved under strong functional constraints. Results suggest cytochromes of the CYP6DE subfamily evolve to reinforce their detoxifying capacity hydroxylating mainly α- and ß-pinene to (+) and (-)-trans-verbenol, being the negative enantiomer used as a pheromone by several Dendroctonus species; whereas cytochromes of the CYP6DJ subfamily appear to retain their original function related to the detoxification of these compounds.

2.
Neotrop. ichthyol ; 19(3): e200134, 2021. tab, graf, mapas
Artículo en Inglés | VETINDEX | ID: vti-32520

RESUMEN

We tested the effects of ruralization and urbanization on the functional diversity indices and the composition of functional traits of Neotropical stream fish communities. The study was carried out in 24 streams of the Pirapó, Piquiri, Paraná III and Iguassu river basins. Land use in the watershed was categorized as percentages of native vegetation, rural occupation and urban occupation. Statistical tests revealed negative bivariate correlations between functional dispersion and the proportion of native vegetation in the watershed. The results indicate that a higher percentage of rural or urban occupation is associated with increased functional dispersion. In the analyzes of trait composition, significant alterations were observed in response to urbanization while only the increase in herbivory responded to ruralization. As the area of native vegetation is reduced by urbanization, the trait composition changes, with reduced proportions of species with intolerance to hypoxia, migratory reproductive behavior, external fertilization, and subterminal mouth, and increased proportions of species with parental care, detritivory, internal fertilization, and an upper mouth. Therefore, fish species that have these specific characteristics are more likely to disappear from streams as urbanization progresses. In summary, urbanization was related to a greater change in the composition of functional traits than ruralization.(AU)


Nós testamos os efeitos da ruralização e da urbanização sobre os índices de diversidade funcional e da composição de traços funcionais em assembleias de peixes de riachos Neotropicais. Amostras foram feitas em 24 riachos distribuídos nas bacias dos rios Pirapó, Piquiri, Paraná III e Iguaçu. O uso do solo foi categorizado por meio das porcentagens de vegetação, ocupação rural e urbana. Testes estatísticos revelaram correlações negativas bivariadas entre a dispersão funcional e a proporção de vegetação. Os resultados indicaram que maior percentual de ocupação rural ou urbana está associado ao aumento da dispersão funcional. Nas análises de composição de traços foram observadas alterações significativas em resposta à urbanização, enquanto apenas o aumento de herbívoros respondeu à ruralização. À medida que a área de vegetação é reduzida, a composição de traços muda, com redução nas proporções de espécies com intolerância à hipóxia, comportamento reprodutivo migratório, fertilização externa e boca subterminal, e aumento da proporção daquelas com cuidado parental, detritivoria, fertilização interna e boca superior. Portanto, espécies que apresentam essas características têm maior probabilidade de desaparecer dos riachos à medida que a urbanização avança. Em resumo, a urbanização foi relacionada a maior alteração na composição de traços funcionais do que a ruralização.(AU)


Asunto(s)
Animales , Urbanización , Características del Suelo , Cuencas Hidrográficas , Peces/crecimiento & desarrollo , Ríos
3.
Neotrop. ichthyol ; 19(3): e200134, 2021. tab, graf, mapas
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1340230

RESUMEN

We tested the effects of ruralization and urbanization on the functional diversity indices and the composition of functional traits of Neotropical stream fish communities. The study was carried out in 24 streams of the Pirapó, Piquiri, Paraná III and Iguassu river basins. Land use in the watershed was categorized as percentages of native vegetation, rural occupation and urban occupation. Statistical tests revealed negative bivariate correlations between functional dispersion and the proportion of native vegetation in the watershed. The results indicate that a higher percentage of rural or urban occupation is associated with increased functional dispersion. In the analyzes of trait composition, significant alterations were observed in response to urbanization while only the increase in herbivory responded to ruralization. As the area of native vegetation is reduced by urbanization, the trait composition changes, with reduced proportions of species with intolerance to hypoxia, migratory reproductive behavior, external fertilization, and subterminal mouth, and increased proportions of species with parental care, detritivory, internal fertilization, and an upper mouth. Therefore, fish species that have these specific characteristics are more likely to disappear from streams as urbanization progresses. In summary, urbanization was related to a greater change in the composition of functional traits than ruralization.(AU)


Nós testamos os efeitos da ruralização e da urbanização sobre os índices de diversidade funcional e da composição de traços funcionais em assembleias de peixes de riachos Neotropicais. Amostras foram feitas em 24 riachos distribuídos nas bacias dos rios Pirapó, Piquiri, Paraná III e Iguaçu. O uso do solo foi categorizado por meio das porcentagens de vegetação, ocupação rural e urbana. Testes estatísticos revelaram correlações negativas bivariadas entre a dispersão funcional e a proporção de vegetação. Os resultados indicaram que maior percentual de ocupação rural ou urbana está associado ao aumento da dispersão funcional. Nas análises de composição de traços foram observadas alterações significativas em resposta à urbanização, enquanto apenas o aumento de herbívoros respondeu à ruralização. À medida que a área de vegetação é reduzida, a composição de traços muda, com redução nas proporções de espécies com intolerância à hipóxia, comportamento reprodutivo migratório, fertilização externa e boca subterminal, e aumento da proporção daquelas com cuidado parental, detritivoria, fertilização interna e boca superior. Portanto, espécies que apresentam essas características têm maior probabilidade de desaparecer dos riachos à medida que a urbanização avança. Em resumo, a urbanização foi relacionada a maior alteração na composição de traços funcionais do que a ruralização.(AU)


Asunto(s)
Animales , Urbanización , Características del Suelo , Cuencas Hidrográficas , Peces/crecimiento & desarrollo , Ríos
4.
PeerJ ; 7: e6634, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31119065

RESUMEN

The stomach bacterium Helicobacter pylori is one of the most prevalent pathogens in humans, closely linked with serious diseases such as gastric cancer. The microbe has been associated with its host for more than 100,000 years and escorted modern humans out of Africa. H. pylori is predominantly transmitted within families and dispersed globally, resulting in distinct phylogeographic patterns, which can be utilized to investigate migrations and bioturbation events in human history. Latin America was affected by several human migratory waves due to the Spanish colonisation that drastically changed the genetic load and composition of the bacteria and its host. Genetic evidence indicates that independent evolutionary lines of H. pylori have evolved in mestizos from Colombia and other countries in the region during more than 500 years since colonisation. The vacuolating cytotoxin VacA represents a major virulence factor of the pathogen comprising two domains, p33 and p55, the latter of which is essential for binding to the host epithelial cell. The evolution of the VacA toxin in Colombia has been strongly biased due to the effects of Spanish colonization. However, the variation patterns and microevolution of the p55 domain have not yet been described for this population. In the present study, we determined the genetic polymorphisms and deviations in the neutral model of molecular evolution in the p55 domain of 101 clinical H. pylori isolates collected in Bogotá, a city located in Andean mountains characterized by its high gastric cancer risk and its dominant mestizo population. The microevolutionary patterns of the p55 domain were shaped by recombination, purifying and episodic diversifying positive selection. Furthermore, amino acid positions 261 and 321 in the p55 domain of VacA show a high variability among mestizos clinical subsets, suggesting that natural selection in H. pylori may operate differentially in patients with different gastric diseases.

5.
Mol Genet Genomics ; 294(4): 901-917, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30923942

RESUMEN

The Pr1 family of serine endopeptidases plays an important role in pathogenicity and virulence of entomopathogens such as Metarhizium anisopliae (Ascomycota: Hypocreales). These virulence factors allow for the penetration of the host cuticle, a vital step in the infective process of this fungus, which possesses 11 Pr1 isoforms (Pr1A through Pr1K). The family is divided into two classes with Class II (proteinase K-like) comprising 10 isoforms further split into three subfamilies. It is believed that these isoforms act synergistically and with other virulence factors, allowing pathogenicity to multiple hosts. As virulence coevolves through reciprocal selection with hosts, positive selection may lead to the evolution of new protease families or isoforms of extant ones that can withstand host defenses. This work tests this hypothesis in Class II Pr1 proteins, focusing on M. anisopliae, employing different methods for phylogenetic inference in amino acid and nucleotide datasets in multiple arrangements for Metarhizium spp. and related species. Phylogenies depict groups that match the taxonomy of their respective organisms with high statistical support, with minor discrepancies. Positively selected sites were identified in six out of ten Pr1 isoforms, most of them located in the proteolytic domain and spatially close to the catalytic residues. Moreover, there was evidence of functional divergence in the majority of pairwise comparisons. These results imply the existence of differential selective pressure acting on Pr1 proteins and a potential new isoform, likely affecting host specificities, virulence, or even adapting the organism to different host-independent lifestyles.


Asunto(s)
Metarhizium/clasificación , Metarhizium/patogenicidad , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Sitios de Unión , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Metarhizium/enzimología , Familia de Multigenes , Filogenia , Dominios Proteicos , Selección Genética , Factores de Virulencia/química , Factores de Virulencia/genética
6.
BMC Evol Biol ; 18(1): 10, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390964

RESUMEN

BACKGROUND: Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. RESULTS: Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. CONCLUSIONS: Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur.


Asunto(s)
Evolución Molecular , Proteínas de Choque Térmico/genética , Platelmintos/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Regulación de la Expresión Génica , Variación Genética , Proteínas de Choque Térmico/química , Modelos Moleculares , Familia de Multigenes , Motivos de Nucleótidos/genética , Filogenia , Seudogenes , Selección Genética
7.
Ann Bot ; 119(4): 659-670, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087661

RESUMEN

Background and Aims: Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Methods: Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. Key Results: The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Conclusions: Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be explained by high phenotypic and phylogenetic resemblance between exotic and native species. The use of continuous gradients when studying the effects of disturbance on community assembly is advocated.


Asunto(s)
Ecosistema , Plantas , Roedores , Animales , Biodiversidad , Clima Desértico , Especies Introducidas , Filogenia , Dinámica Poblacional
8.
Ecology ; 98(3): 668-677, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28036095

RESUMEN

How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly.


Asunto(s)
Ambiente , Fenotipo , Plantas/anatomía & histología , Argentina , Hojas de la Planta
9.
BMC Evol Biol ; 16(1): 256, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894257

RESUMEN

BACKGROUND: The merozoite surface protein 7 (MSP7) is a Plasmodium protein which is involved in parasite invasion; the gene encoding it belongs to a multigene family. It has been proposed that MSP7 paralogues seem to be functionally redundant; however, recent experiments have suggested that they could have different roles. RESULTS: The msp7 multigene family has been described in newly available Plasmodium genomes; phylogenetic relationships were established in 12 species by using different molecular evolutionary approaches for assessing functional divergence amongst MSP7 members. Gene expansion and contraction rule msp7 family evolution; however, some members could have had concerted evolution. Molecular evolutionary analysis showed that relaxed and/or intensified selection modulated Plasmodium msp7 paralogous evolution. Furthermore, episodic diversifying selection and changes in evolutionary rates suggested that some paralogous proteins have diverged functionally. CONCLUSIONS: Even though msp7 has mainly evolved in line with a birth-and-death evolutionary model, gene conversion has taken place between some paralogous genes allowing them to maintain their functional redundancy. On the other hand, the evolutionary rate of some MSP7 paralogs has become altered, as well as undergoing relaxed or intensified (positive) selection, suggesting functional divergence. This could mean that some MSP7s can form different parasite protein complexes and/or recognise different host receptors during parasite invasion. These results highlight the importance of this gene family in the Plasmodium genus.


Asunto(s)
Evolución Molecular , Proteínas de la Membrana/genética , Plasmodium/genética , Proteínas Protozoarias/genética , Animales , Conversión Génica , Merozoítos/metabolismo , Familia de Multigenes , Filogenia , Plasmodium/clasificación , Plasmodium/crecimiento & desarrollo , Selección Genética
10.
Dev Genes Evol ; 226(4): 259-68, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27150824

RESUMEN

Gene families have been shown to play important roles in plant evolution and are associated with diversification and speciation. Genes of WUSCHEL-related homeobox family of transcription factors have important functions in plant development and are correlated with the appearance of evolutionary novelties. There are several published studies related to this family, but little is known about the relationships among the main clades in the phylogeny and the molecular evolution of the family. In this study, we obtained a well-resolved Bayesian phylogenetic tree establishing the relationships among the main clades and determining the position of Selaginella moellendorffii WOX genes. Moreover, a correlation was identified between the number of genes in the genomes and the events of whole-genome duplications. The intron-exon structure is more consistent across the modern clade, which appeared more recently in the WOX evolutionary history, and coincides with the development of higher complexity in plant species. No positive selection was detected among sites through the branches in the tree. However, with regard to the main clades, functional divergence among certain amino acids in the homeodomain region was found. Relaxed purifying selection could be the main driving force in the evolution of these genes and in agreement with some genes have been demonstrated to be functionally redundant.


Asunto(s)
Plantas/genética , Evolución Molecular , Duplicación de Gen , Genoma de Planta , Proteínas de Homeodominio/genética , Filogenia , Plantas/clasificación , Selección Genética
11.
FEBS J ; 281(22): 4967-77, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25220072

RESUMEN

Although the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species. By integrating data from chemical genetics with protein family conservation, genetic and protein interactions, we found that gene families rarely have more than one MDR, indicating that paralogs evolve asymmetrically with regard to multidrug resistance roles. Furthermore, MDRs have more genetic and protein interaction partners than non-MDRs, supporting their participation in complex biochemical systems underlying the tolerance to multiple bioactive molecules. MDRs share more chemical genetic interactions with other MDRs than with non-MDRs, regardless of their evolutionary affinity. These results suggest the existence of an intricate system involved in the global drug tolerance phenotypes. Finally, MDRs are more likely to be hit repeatedly by mutations in laboratory evolution experiments, indicating that they have great adaptive potential. The results presented here not only reveal the main genomic features underlying the evolution of MDRs, but also shed light on the gene families from which drug resistance is more likely to emerge in fungi.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Evolución Molecular , Duplicación de Gen , Genes MDR , Saccharomyces cerevisiae/genética , Secuencia de Bases , Secuencia Conservada , ADN de Hongos/genética , Farmacorresistencia Fúngica/genética , Genes Fúngicos , Análisis de Secuencia de ADN
12.
Bioinformation ; 5(4): 173-6, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21364782

RESUMEN

Glycerol dehydratase (GD) catalyses glycerol reductive conversion to 3-hydroxypropanaldehyde (3-HPA), this being the first step required for the microbial conversion of glycerol to 1, 3 -propanodiol. GD has been functionally characterised to date and two main groups have been determined, one of them being vitamin B(12)-dependent and the other B(12)-independent. GD evolutionary history has been described and an exhaustive analysis made for detecting the functional residues responsible for type I divergence. GD phylogenetic tree topology was seen to be statistically robust and the data indicated strong purifying selection operating on the GD proteins within it. Two clades were indentified, one for vitamin B(12)-dependent and the other for B(12)- independent classes. The ancient hot-pot residues responsible for protein divergency for each clade were also identified. The basic evolutionary biology for GD proteins has been described, thereby opening the way forward for developing rational mutagenesis studies.

13.
Evol Bioinform Online ; 4: 153-69, 2008 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19204815

RESUMEN

Type I and type-II functional divergences have been stated to highlight specific residues carrying out differential functions in evolutionary-divergent protein clusters from a single common ancestor. Briefly, type I analysis is based on residue constraints reflecting a gain of function just in one cluster of an entire family of proteins; while the type-II approach is based on residue constraints showing a different chemical nature in every cluster of a protein family. This last evidence is understood as differential functionality among clusters. The Receptor Activity-Modifying Proteins constitute a family characterized by its paralogous distribution in vertebrates. They are known as G-Protein Coupled Receptor modulators. Although several studies have determined their involvement in ligand binding, specificity, and enhancement of signal transduction, the responsible residues supporting those functions are unclear. Using different bioinformatic approaches, we predicted residues involved in different RAMP functional tasks. Many residues localized in an extracellular coil of RAMP proteins were predicted to be under functional divergence suggesting a gain of function in their respective proteins. Interestingly, the transmembrane region also showed important results for residues playing relevant roles where most of them showed a biased distribution on the structure. A relevant role was conferred by the enrichment of type-II residues observed in their sequences. We show a collection of residues explaining possible gain of function and differential functionality in RAMP proteins. These residues are still experimentally unexplored with regards to functionality. Finally, an evolutionary history could be discerned. Mainly, the RAMP2 cluster has evolved in a higher manner than other RAMP clusters. However, a deacceleration in the aminoacid substitution rate of RAMP2 was observed in mammals. Such effect could be caused by the co-evolution of ligands and receptors interacting with RAMP2 through evolution and/or the specialization of this cluster in GPCR modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA