Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 338: 122201, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763726

RESUMEN

Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting ß-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and ß-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and ß-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.


Asunto(s)
Glicósido Hidrolasas , Sefarosa , Sefarosa/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Hidrólisis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Galactanos/química , Galactanos/metabolismo
2.
Carbohydr Polym ; 318: 121117, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479453

RESUMEN

Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 ß-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the ß-1,4 glycosidic bond between ß-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "ß-funoranase" and suggested to assign it an EC number.


Asunto(s)
Galactosa , Polisacáridos , Sefarosa , Glicósido Hidrolasas/química , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA