Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.740
Filtrar
1.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091869

RESUMEN

G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GZESTY, a highly sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing novel cloning methods to ensure the correct expression ratio of GZESTY components. GZESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, as well as responses from endogenous GPCRs. Notably, with GZESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.

2.
Angew Chem Int Ed Engl ; : e202405941, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110923

RESUMEN

The opioid crisis has highlighted the urgent need to develop non-opioid alternatives for managing pain, with an effective, safe, and non-addictive pharmacotherapeutic profile. Using an extensive structure-activity relationship approach, here we have identified a new series of highly selective neurotensin receptor type 2 (NTS2) macrocyclic compounds that exert potent, opioid-independent analgesia in various experimental pain models. To our knowledge, the constrained macrocycle in which the Ile12 residue of NT(7-12) was substituted by cyclopentylalanine, Pro7 and Pro10 were replaced by allyl-glycine followed by side-chain to side-chain cyclization is the most selective analog targeting NTS2 identified to date (Ki 2.9 nM), showing 30,000-fold selectivity over NTS1. Of particular importance, this macrocyclic analog is also able to potentiate the analgesic effects of morphine in a dose- and time-dependent manner. Exerting complementary analgesic actions via distinct mechanisms of nociceptive transmission, NTS2-selective macrocycles can therefore be exploited as opioid-free analgesics or as opioid-sparing therapeutics, offering superior pain relief with reduced adverse effects to pain patients.

3.
Biochem Pharmacol ; : 116464, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111604

RESUMEN

CC chemokine receptor 2 and CCL2 are highly involved in cancer growth and metastasis, and immune escape. Raised sodium ion concentrations in solid tumours have also been correlated to metastasis and immune modulation. Sodium ions can modulate class A G protein-coupled receptors through the sodium ion binding site characterized by a highly conserved aspartic acid residue (D2.50), also present in CCR2. Hence, we further explored this binding site in CCR2 by radioligand binding studies and mutagenesis. Modulation of three distinctly binding radioligands by sodium ions and amiloride derivates was investigated. Sodium ions were observed to be relatively weak modulators of antagonist binding, but substantially increased 125I-CCL2 dissociation from CCR2. 6-Substituted Hexamethylene Amiloride (HMA) modulated all tested radioligands. Induced-fit docking of HMA in the presumed sodium ion binding site of CCR2 confirmed its binding site. Finally, investigation of (cancer-associated) mutations in the sodium ion binding site showed a markedly decreased expression compared to wild type. Only two mutants, G123A3.35 and G127K3.39, were able to be bound by [3H]INCB3344 and [3H]CCR2-RA-[R]. Thus, mutagenesis showed that the sodium ion binding site residues, which are distinct from other class A GPCRs and related to chemokine receptor evolution, are crucial for receptor integrity. Moreover, the tested mutations appeared to have no effect on modulation observed by HMA or a minor effect on sodium chloride modulation on the tested radioligands. All in all, these results invite further exploration of the CCR2 sodium ion binding site in (cancer) biology, and potentially as a third druggable binding site.

4.
Diabetes Obes Metab ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113250

RESUMEN

AIM: To investigate the effect of G protein-coupled receptor 55 (GPR55) deletion on glucose homeostasis and islet function following diet-induced obesity. METHODS: GPR55-/- and wild-type (WT) mice were fed ad libitum either standard chow (SC) or a high-fat diet (HFD) for 20 weeks. Glucose and insulin tolerance tests were performed at 9/10 and 19/20 weeks of dietary intervention. Insulin secretion in vivo and dynamic insulin secretion following perifusion of isolated islets were also determined, as were islet caspase-3/7 activities and ß-cell 5-bromo-20-deoxyuridine (BrdU) incorporation. RESULTS: GPR55-/- mice fed a HFD were more susceptible to diet-induced obesity and were more glucose intolerant and insulin resistant than WT mice maintained on a HFD. Islets isolated from HFD-fed GPR55-/- mice showed impaired glucose- and pcacahorbol 12-myristate 13-acetate-stimulated insulin secretion, and they also displayed increased cytokine-induced apoptosis. While there was a 5.6 ± 1.6-fold increase in ß-cell BrdU incorporation in the pancreases of WT mice fed a HFD, this compensatory increase in ß-cell proliferation in response to the HFD was attenuated in GPR55-/- mice. CONCLUSIONS: Under conditions of diet-induced obesity, GPR55-/- mice show impaired glucose handling, which is associated with reduced insulin secretory capacity, increased islet cell apoptosis and insufficient compensatory increases in ß-cell proliferation. These observations support that GPR55 plays an important role in positively regulating islet function.

5.
J Biochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115281

RESUMEN

Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2), and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.

6.
Mol Pharm ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134056

RESUMEN

Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and antifibrotic effects has led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here, we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of around 3 to 5 days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo.

7.
Sci Rep ; 14(1): 18314, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112591

RESUMEN

The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the ß-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The ß-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.


Asunto(s)
Benzoxazinas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Naftalenos , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Animales , Ratones , Humanos , Cinética , Naftalenos/farmacología , Benzoxazinas/farmacología , Cannabinoides/metabolismo , Cannabinoides/farmacología , Morfolinas/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular , Ciclohexanoles
8.
J Pharm Pract ; : 8971900241273241, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137364

RESUMEN

Background: Amiodarone-induced anaphylaxis is seldom reported. The mechanism of this anaphylaxis is unknown. Methods: A literature search was carried out with keywords "Amiodarone" and "Anaphylaxis" and "polysorbate 80" or "hypotension." A search using "amiodarone" in the FDA Adverse Event Reporting System (FAERS) from 1969 to 2024 was also conducted. Results: There are a total of 10 cases of amiodarone-induced anaphylaxis in the literature. Six patients were male. Ages ranged from 15 to 86 years old. Nine cases were triggered by intravenous injection (IV) and one by oral administration. Eight patients did not have previous exposure to amiodarone. The trigger times for IV amiodarone were immediate to 90 minutes. All nine cases of IV amiodarone resulted in hypotension (90%), with an immeasurable blood pressure (70%). Presentations included bronchospasm or a skin rash (60%), angioedema (40%), and unconsciousness (20%). Only one patient had a history of allergy to penicillin and sulfonamide. An amiodarone skin test was positive on one patient. Increased blood tryptase (4 cases), positive basophil activation test to amiodarone (2 cases), increased eosinophil count (1 case), and increased serum IgE (1 case) were reported. Amiodarone was terminated in 80% of the patients. Epinephrine, norepinephrine, antihistamine-1, or steroids were used to rescue patients. Four patients were intubated. All patients fully recovered. In the FAERS database, 89 cases of amiodarone-associated anaphylaxis were reported, resulting in 14 deaths. Conclusions: Solvent polysorbate 80, amiodarone, and iodide may contribute to amiodarone-induced anaphylaxis. Prompt treatment is the key to saving patients.

9.
SLAS Discov ; : 100176, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122117

RESUMEN

Agonists of the secretin receptor have potential applications for diseases of the cardiovascular, gastrointestinal, and metabolic systems, yet no clinically-active non-peptidyl agonists of this receptor have yet been developed. In the current work, we have identified a new small molecule lead compound with this pharmacological profile. We have prepared and characterized a systematic structure-activity series around this thiadiazole scaffold to better understand the molecular determinants of its activity. We were able to enhance the in vitro activity and to maintain the specificity of the parent compound. We found the most active candidate to be quite stable in plasma, although it was metabolized by hepatic microsomes. This chemical probe should be useful for in vitro studies and needs to be tested for in vivo pharmacological activity. This could be an important lead toward the development of a first-in-class orally active agonist of the secretin receptor, which could be useful for multiple disease states.

10.
J Biosci Bioeng ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122620

RESUMEN

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.

11.
Med Rev (2021) ; 4(4): 262-283, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135605

RESUMEN

Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.

12.
J Med Biochem ; 43(4): 460-468, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-39139173

RESUMEN

Background: To investigate the expression of miR-21, heat shock protein-90a (HSP90a) and G protein-coupled receptorrelated sorting protein 1(GASP-1) in the serum of lung cancer patients and their correlation with pathological subtypes. Methods: Eighty patients with lung cancer were included in the lung cancer group from May 2020 to May 2022, and 40 volunteers who underwent physical examination were randomly included in the control group according to the group ratio of 2:1. This ratio balances the need for a sufficiently large experimental group to detect significant effects with the practicality of recruiting a manageable control group. To ensure the validity of our findings, we meticulously calculated the sample size to achieve adequate statistical power, thus enabling us to draw reliable conclusions. Serum miR-21, HSP90a and GASP-1 levels of patients in the two groups were detected. We quantitatively assessed the serum levels of miR-21, HSP90a, and GASP1 in lung cancer patients and healthy volunteers. We employed enzyme-linked immunosorbent assay (ELISA) for HSP90a and GASP-1, and reverse transcription-polymerase chain reaction (RT-PCR) for miR-21, ensuring precise quantification. To explore the correlation between it and pathological subtypes, TNM stage and lymph node metastasis of lung cancer patients. TNM stands for Tumor, Node, and Metastasis. This system is widely used for staging cancer and describes the size and extent of the primary tumor (T), the absence or presence of cancer in nearby lymph nodes (N), and whether the cancer has spread to other parts of the body (M). Results: The serum levels of miR-21, HSP90a and GASP1 in lung cancer group were higher than those in control group (P < 0.05). ROC curve analysis showed that serum miR-21, HSP90a and GASP-1 levels had certain value in the diagnosis of lung cancer, and their AUC values were 0.901, 0.874 and 0.865, respectively (P < 0.05). There was no difference in the relative expression level of serum miR-21 between squamous cell carcinoma group and adenocarcinoma group (P>0.05), but the levels of HSP90a and GASP-1 in adenocarcinoma group were higher than those in squamous cell carcinoma group (P < 0.05). There was no difference in the levels of serum miR-21, HSP90a and GASP-1 between stage I and stage II groups (P>0.05). The levels of serum miR-21, HSP90a and GASP-1 in stage III and stage IV groups were higher than those in stage I and stage II groups, and those in stage IV were higher than those in stage III group (P < 0.05). The serum levels of miR-21, HSP90a and GASP-1 in patients with metastasis were higher than those in patients without metastasis (P < 0.05). Conclusions: Our study concludes that there is a notable association between elevated serum levels of miR-21, HSP90a, and GASP-1 and lung cancer. However, it is crucial to acknowledge that these findings are preliminary and further statistical analysis is needed to strengthen these associations. Future studies with comprehensive statistical evaluation will be vital to validate these potential biomarkers for lung cancer diagnosis and prognosis.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39141573

RESUMEN

A-kinase-anchoring proteins (AKAPs) act as scaffold proteins that anchor the regulatory subunits of the cAMP-dependent protein kinase A (PKA) to coordinate and compartmentalize signaling elements and signals downstream of Gs-coupled G protein-coupled receptors (GPCRs). The beta-2-adrenoceptor (ß2AR), as well as the Gs-coupled EP2 and EP4 receptor subtypes of the E-prostanoid (EP) receptor subfamily, are effective regulators of multiple airway smooth muscle (ASM) cell functions whose dysregulation contributes of asthma pathobiology. Here, we identify specific roles of the AKAPs Ezrin and Gravin, in differentially regulating PKA substrates downstream of the ß2AR, EP2 receptor (EP2R) and EP4 receptor (EP4R). Knockdown of Ezrin, Gravin, or both in primary human ASM cells caused differential phosphorylation of the PKA substrates vasodilator-stimulated phosphoprotein (VASP) and heat shock protein 20 (HSP20). Ezrin knockdown, as well as combined Ezrin + Gravin knockdown significantly reduced the induction of phospho-VASP and phospho-HSP20 by ß2AR, EP2R, and EP4R agonists. Gravin knockdown inhibited the induction of phospho-HSP20 by ß2AR, EP2R, and EP4R agonists. Knockdown of Ezrin, Gravin, or both also attenuated histamine-induced phosphorylation of MLC20. Moreover, knockdown of Ezrin, Gravin or both suppressed the inhibitory effects of Gs-coupled receptor agonists on cell migration in ASM cells. These findings demonstrate the role of AKAPs in regulating Gs-coupled GPCR signaling and function in ASM, and suggest the therapeutic utility of targeting specific AKAP family members in the management of asthma.

14.
Crit Rev Clin Lab Sci ; : 1-44, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119983

RESUMEN

The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.

15.
Neuropharmacology ; : 110090, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39048031

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, which is characterized by the accumulation and aggregation of amyloid in brain. Neuronostatin (NST) is an endogenous peptide hormone that participates in many fundamental neuronal processes. However, the metabolism and function of NST in neurons of AD mice are not known. In this study, by combining the structural analyses, primary cultures, knockout cells, and various assessments, the behavior, histopathology, brain-wide expression and cellular signaling pathways in the APP/PS1 mice were investigated. It was found that NST directly bound to GPR107, which was primarily expressed in neurons. NST modulated the neuronal survivability and neurite outgrowth induced by Aß via GPR107 in neurons. Intracerebroventricular (i.c.v.) administration of NST attenuated learning and memory abilities, reduced the synaptic protein levels of hippocampus, but improved amyloid plaques in the cortex and hippocampus of APP/PS1 mice. NST modulated glucose metabolism of hypothalamus-hippocampus-cortex axis in APP/PS1 mice and decreased ATP levels via the regulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in response to Aß, suppressed energetic metabolism, and mitochondrial function in neurons via GPR107/protein kinase A (PKA) signaling pathway. In summary, our findings suggest that NST regulates neuronal function and brain energetic metabolism in AD mice via the GPR107/PKA signaling pathway, which can be a promising target for the treatment of AD.

16.
Toxics ; 12(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39058137

RESUMEN

Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 µM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 µM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 µM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1ß, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 µM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 µM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.

17.
Bioorg Med Chem ; 110: 117823, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964170

RESUMEN

Molecular imaging using positron emission tomography (PET) can serve as a promising tool for visualizing biological targets in the brain. Insights into the expression pattern and the in vivo imaging of the G protein-coupled orexin receptors OX1R and OX2R will further our understanding of the orexin system and its role in various physiological and pathophysiological processes. Guided by crystal structures of our lead compound JH112 and the approved hypnotic drug suvorexant bound to OX1R and OX2R, respectively, we herein describe the design and synthesis of two novel radioligands, [18F]KD23 and [18F]KD10. Key to the success of our structural modifications was a bioisosteric replacement of the triazole moiety with a fluorophenyl group. The 19F-substituted analog KD23 showed high affinity for the OX1R and selectivity over OX2R, while the high affinity ligand KD10 displayed similar Ki values for both subtypes. Radiolabeling starting from the respective pinacol ester precursors resulted in excellent radiochemical yields of 93% and 88% for [18F]KD23 and [18F]KD10, respectively, within 20 min. The new compounds will be useful in PET studies aimed at subtype-selective imaging of orexin receptors in brain tissue.


Asunto(s)
Receptores de Orexina , Tomografía de Emisión de Positrones , Receptores de Orexina/metabolismo , Ligandos , Humanos , Relación Estructura-Actividad , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Descubrimiento de Drogas , Triazoles/química , Triazoles/síntesis química , Triazoles/farmacología , Radioisótopos de Flúor/química , Antagonistas de los Receptores de Orexina/química , Antagonistas de los Receptores de Orexina/síntesis química , Antagonistas de los Receptores de Orexina/farmacología
18.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062858

RESUMEN

Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic partial SD in Wistar rats using a modified multiple-platform method. Echocardiography demonstrated impaired systolic and diastolic function in the left ventricle (LV) of the SD rats. The SD rats exhibited an elevated heart rate and a higher low-frequency to high-frequency ratio in a heart-rate variability analysis. Rapid transesophageal atrial pacing led to a higher incidence of AF and longer mean AF durations in the SD rats. Conventional microelectrode recordings showed accelerated pulmonary vein (PV) spontaneous activity in SD rats, along with a heightened occurrence of delayed after-depolarizations in the PV and left atrium (LA) induced by tachypacing and isoproterenol. A Western blot analysis showed reduced expression of G protein-coupled receptor kinase 2 (GRK2) in the LA of the SD rats. Chronic partial SD impairs LV function, promotes AF genesis, and increases PV and LA arrhythmogenesis, potentially attributed to sympathetic overactivity and reduced GRK2 expression. Targeting GRK2 signaling may offer promising therapeutic avenues for managing chronic partial SD-induced AF. Future investigations are mandatory to investigate the dose-response relationship between SD and AF genesis.


Asunto(s)
Fibrilación Atrial , Modelos Animales de Enfermedad , Atrios Cardíacos , Venas Pulmonares , Ratas Wistar , Privación de Sueño , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Ratas , Privación de Sueño/complicaciones , Privación de Sueño/fisiopatología , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Masculino , Frecuencia Cardíaca , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Incidencia
19.
Lab Invest ; 104(9): 102107, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964504

RESUMEN

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers; however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sublines were established. Wound healing and transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (severe combined immunodeficiency mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 downstream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sublines, OE cells presented weaker migration/invasion abilities, compared with controls, whereas in KD cells, these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G protein-coupled receptor, family C, group 5, member C (GPRC5C) was a key downstream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion and remarkably reversed the proinvasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histologic grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via downregulation of GPRC5C.

20.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026696

RESUMEN

A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA