Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105756, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364891

RESUMEN

Heterotrimeric G proteins (Gαßγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Acoplados a Proteínas G , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Humanos , Animales , Ingeniería de Proteínas
2.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837103

RESUMEN

The ground-based augmentation system (GBAS) is a regional system supporting navigation and ensuring the integrity of aircraft near airports during precision approaches. Standardized at the international level, GBAS Approach Service Types (GASTs) C and D, which are defined for the GPS L1 signal, support CAT I and II/III precision approaches with decision heights of 200 and 50 ft, respectively. However, the future GBAS, GAST E, which utilizes dual-frequency and multi-constellation signals, and the GAST D1, defined for both GPS L1 and Galileo E1 signals, require the establishment of standards. To define the continuity requirement, the number of critical satellites must be considered. Currently, there is a lack of analysis on the number of critical satellites for various GBAS service types available to the public. This paper aims to evaluate the number of critical satellites for future GBAS service types, employing optimized GPS and Galileo constellations and assessing all potential protection levels worldwide. The methodology to model the difference of position solutions using the 30 s and 100 s smoothing filters is presented in detail to compute the protection level for GASTs D and D1. The resulting number of critical satellites can be used to define the continuity allocation of future GBAS.

3.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36433183

RESUMEN

This article presents analysis results from a long-term multi-site Global Navigation Satellite System (GNSS) Radio Frequency Interference (RFI) monitoring campaign in the context of Ground Based Augmentation System (GBAS) Dual Frequency Multi Constellation (DFMC) concept operation. GBAS resilience against unintentional RFI is an important area for investigation as the ground station receivers often must operate adjacent to high-traffic roads where chances of being affected by RFI are high. To be able to develop algorithms and reaction strategies necessary to ensure continuity and availability of service, knowledge of interference signal characteristics and frequency band/bands affected, as well as relative occurrence rates between the considered frequencies and frequency combinations, is necessary. The analysis presented in the article covers the prevalence and properties of the RFI events observed on the GPSs L1 and L5 and the Galileo E1 and E5a frequency bands that are considered by the on-going DFMC GBAS concept development initiatives. Due to being spectrally adjacent, the observed event analysis is also carried out for the Galileo E5b and GLONASS G1 frequency bands. The article also addresses the issue of spectral occupancy distribution of the observed events and presents new interesting RFI event types captured during the considered monitoring period.

4.
Oncologist ; 27(1): e64-e75, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35305106

RESUMEN

BACKGROUND: The glioblastoma-amplified sequence (GBAS) is a newly identified gene that is amplified in approximately 40% of glioblastomas. This article probes into the expression, prognostic significance, and possible pathways of GBAS in ovarian cancer (OC). METHOD: Immunohistochemical methods were used to evaluate the expression level of GBAS in OC and its relationship with clinicopathological characteristics and prognosis. Glioblastoma-amplified sequence shRNA was designed to transfect into OC cell lines to silence GBAS expression, then detect the proliferation, apoptosis, and migration ability of the cell. Furthermore, an in vitro tumor formation experiment in mice was constructed to prove the effect of GBAS expression on the growth of OC in vivo. To further study the regulation mechanism of GBAS, we performed co-immunoprecipitation (Co-IP) and shotgun LC-MS mass spectrometry identification. RESULTS: Immunohistochemistry indicated that GBAS was markedly overexpressed in OC compared with normal ovarian tissue and was associated with lymph node metastasis. Inhibition of GBAS expression can significantly reduce OC cell proliferation, colony formation, promote cell apoptosis, and reduce the ability of cell migration and invasion. In vivo tumor formation experiments showed that the size and weight of tumors in mice after GBAS expression knockdown was significantly smaller. Glioblastoma-amplified sequence may be combined with elongation factor 1 alpha 1 (eEF1A1) to achieve its regulation in OC. Bioinformatics analysis data indicate that GBAS may be a key regulator of mitochondria-associated pathways, therefore controlling cancer progression. MicroRNA-27b, MicroRNA-23a, and MicroRNA-590 may directly targeting GBAS affects the biological behavior of OC cells. CONCLUSION: The glioblastoma-amplified sequence may regulate the proliferation and metastasis of OC cells by combining with eEF1A1.


Asunto(s)
Glioblastoma , MicroARNs , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Ratones , MicroARNs/genética , Neoplasias Ováricas/patología , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo
5.
BMC Ecol Evol ; 21(1): 128, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157972

RESUMEN

BACKGROUND: In the marine realm, dispersal ability is among the major factors shaping the distribution of species. In the Northeast Atlantic Ocean, the Azores Archipelago is home to a multitude of marine invertebrates which, despite their dispersal limitations, maintain gene flow among distant populations, with complex evolutionary and biogeographic implications. The mechanisms and factors underlying the population dynamics and genetic structure of non-planktotrophic gastropods within the Azores Archipelago and related mainland populations are still poorly understood. The rissoid Cingula trifasciata is herewith studied to clarify its population structure in the Northeast Atlantic Ocean and factors shaping it, with a special focus in intra-archipelagic dynamics. RESULTS: Coupling microsatellite genotyping by amplicon sequencing (SSR-GBAS) and mitochondrial datasets, our results suggest the differentiation between insular and continental populations of Cingula trifasciata, supporting previously raised classification issues and detecting potential cryptic diversity. The finding of connectivity between widely separated populations was startling. In unique ways, dispersal ability, habitat type, and small-scale oceanographic currents appear to be the key drivers of C. trifasciata's population structure in the remote Azores Archipelago. Dispersal as non-planktotrophic larvae is unlikely, but its small-size adults easily engage in rafting. Although the typical habitat of C. trifasciata, with low hydrodynamics, reduces the likelihood of rafting, individuals inhabiting algal mats are more prone to dispersal. Sea-surface circulation might create dispersal pathways for rafts, even between widely separated populations/islands. CONCLUSIONS: Our results show that gene flow of a marine non-planktotrophic gastropod within a remote archipelago can reveal unanticipated patterns, such that the understanding of life in such areas is far from well-understood. We expect this work to be the starting of the application of SSR-GBAS in other non-model marine invertebrates, providing insights on their population dynamics at distinct geographical scales and on hidden diversity. How transversal is the role played by the complex interaction between functional traits, ecological features, and sea-surface circulation in the population structure of marine invertebrates can be further addressed by expanding this approach to more taxa.


Asunto(s)
Gastrópodos , Animales , Océano Atlántico , Azores , Ecosistema , Gastrópodos/genética , Flujo Génico , Humanos
6.
Onco Targets Ther ; 12: 3729-3742, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31190874

RESUMEN

Purpose: Oral squamous cell carcinoma (OSCC) is the most common and severe type of head and neck malignancy. The mechanisms by which OSCC arises depend on changes in a number of different factors and genes and the clinicopathological stage of the tumors. Better understanding the possible mechanisms of OSCC would help to identify a new target for molecular targeted therapy. The current study was focused on elucidating the significance of the glioblastoma-amplified sequence (GBAS) on malignant behaviors in OSCC, including proliferation and apoptosis. Patients and methods: In this study, we measured the levels of mRNA in OSCC and normal oral tissue samples using Affymetrix microarrays. We examined GBAS expression in OSCC tissues and the effect of GBAS knockdown on cell proliferation and apoptosis in vitro and in vivo. The mechanisms underlying GBAS were investigated. Results: In the present study, GBAS expression was substantially elevated in the majority of tested OSCC tissues. Further, knockdown of GBAS using lentiviral-delivered shRNA in cells had significant effects on cell proliferation, apoptosis and the cell cycle. A xenograft model was also used to assess the tumorigenicity of the GBAS knockdown on OSCC cells in vivo. Mechanistically, GBAS activated p53 signaling by regulating the mRNA and protein expression of CHEK1, AKT1, AKT2 and Bax. Finally, we also investigated the expression of GBAS in patients with OSCC, and the data revealed that GBAS expression was correlated with the rates of relapse and tumor grade. Conclusion: Our studies provide evidence that GBAS regulates OSCC cell proliferation and apoptosis via p53 signaling, which may be a candidate biomarker for the prognosis and treatment of OSCC.

7.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29019953

RESUMEN

Ionospheric delay is one of the largest and most variable sources of error for Ground-Based Augmentation System (GBAS) users because inospheric activity is unpredictable. Under normal conditions, GBAS eliminates ionospheric delays, but during extreme ionospheric storms, GBAS users and GBAS ground facilities may experience different ionospheric delays, leading to considerable differential errors and threatening the safety of users. Therefore, ionospheric monitoring and assessment are important parts of GBAS integrity monitoring. To study the effects of the ionosphere on the GBAS of Guangdong Province, China, GPS data collected from 65 reference stations were processed using the improved "Simple Truth" algorithm. In addition, the ionospheric characteristics of Guangdong Province were calculated and an ionospheric threat model was established. Finally, we evaluated the influence of the standard deviation and maximum ionospheric gradient on GBAS. The results show that, under normal ionospheric conditions, the vertical protection level of GBAS was increased by 0.8 m for the largest over bound σ v i g (sigma of vertical ionospheric gradient), and in the case of the maximum ionospheric gradient conditions, the differential correction error may reach 5 m. From an airworthiness perspective, when the satellite is at a low elevation, this interference does not cause airworthiness risks, but when the satellite is at a high elevation, this interference can cause airworthiness risks.

8.
Sensors (Basel) ; 17(8)2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28758983

RESUMEN

Under abnormal troposphere, Ground-Based Augmentation System (GBAS) is unable to eliminate troposphere delay, resulting in non-nominal troposphere error. This paper analyzes the troposphere meteorological data of eight International GNSS Monitoring Assessment System (iGMAS) stations and 10 International GNSS Service (IGS) stations in China and records the most serious conditions during 2015 and 2016. Simulations show that the average increase in Vertical Protection Level (VPL) of all visible satellites under non-nominal troposphere is 2.32 m and that more satellites increase the VPL. To improve GBAS integrity, this paper proposes a satellite selection method to reduce the non-nominal troposphere error. First, the number of satellites in the optimal subset is determined to be 16 based on the relationship among VPL, non-nominal troposphere error and satellite geometry. Second, the distributions of the optimal satellites are determined. Finally, optimal satellites are selected in different elevation ranges. Results show that the average VPL increase caused by non-nominal troposphere error is 1.15 m using the proposed method. Compared with the brute method and greedy method, the running rate of the proposed method is improved by 390.91% and 111.65%, respectively. In summary, the proposed method balances the satellite geometry and non-nominal troposphere error while minimizing the VPL and improving the running rate.

9.
J Steroid Biochem Mol Biol ; 172: 69-78, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28583875

RESUMEN

Bile acid homeostasis is maintained by liver synthesis, bile duct secretion, microbial metabolism and intestinal reabsorption into the blood. When drug insults result in liver damage, the variances of bile acids (BAs) are related to the physiological status of the liver. Here, we established a method to simultaneously quantify 19 BAs in rat plasma, liver, bile and different intestinal section contents (duodenum, jejunum, ileum, cecum and colon) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to reveal the pattern of bile acid homeostasis in the enterohepatic circulation of bile acids in physiological situations. Dynamic changes in bile acid composition appeared throughout the enterohepatic circulation of the BAs; taurine- and glycine-conjugated BAs and free BAs had different dynamic homeostasis levels in the circulatory system. cholic acid (CA), beta-muricholic acid (beta-MCA), lithocholic acid (LCA), glycocholic acid (GCA) and taurocholic acid (TCA) greatly fluctuated in the bile acid pool under physiological conditions. Taurine- and glycine-conjugated bile acids constituted more than 90% in the bile and liver, whereas GCA and TCA accounted for more than half of the total bile acids and the secretion of bile mainly via conjugating with taurine. While over 80% of BAs in plasma were unconjugated bile acids, CA and HDCA were the most abundant elements. Unconjugated bile acids constituted more than 90% in the intestine, and CA, beta-MCA and HDCA were the top three bile acids in the duodenum, jejunum and ileum content, but LCA and HDCA were highest in the cecum and colon content. As the main secondary bile acid converted by microflora in the intestine, LCA was enriched in the cecum and DCA mostly in the colon. As endogenous substances, the concentrations of plasma BAs were closely related to time rhythm and diet. In conclusion, analyzing detailed BA profiles in the enterohepatic circulation of bile acids in a single run is possible using LC-MS/MS. Based on the physiological characteristics of the metabolic profiling of 19 BAs in the total bile acid pool and the time rhythm variation of the endogenous bile acids, this study provided a new valuable method and theoretical basis for the clinical research of bile acid homeostasis.


Asunto(s)
Ácidos y Sales Biliares/sangre , Homeostasis/fisiología , Hígado/química , Metabolómica , Animales , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/clasificación , Ciego/química , Cromatografía Líquida de Alta Presión , Colon/química , Duodeno/química , Glicina/sangre , Glicina/química , Íleon/química , Yeyuno/química , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Taurina/sangre , Taurina/química , Factores de Tiempo
10.
Gen Dent ; 62(6): 50-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25369387

RESUMEN

A 37-year-old woman was referred to the author by the American Academy of Cosmetic Dentistry's "Give Back a Smile" program. The program helps facilitate dental treatment and support services for adults who have suffered dental injuries to the smile zone as a result of domestic or sexual violence. The woman presented with a broken jaw and fractured teeth. This case report describes the treatment planning decisions and a successful outcome.


Asunto(s)
Violencia Doméstica , Gestión de Riesgos , Traumatismos de los Dientes/diagnóstico , Traumatismos de los Dientes/terapia , Adulto , Estética Dental , Femenino , Humanos
11.
Meta Gene ; 2: 274-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25606410

RESUMEN

We report on a 27 month old boy presenting with psychomotor delay and dysmorphic features, mainly mild facial asymmetry, prominent cup-shaped ears, long eyelashes, open mouth appearance and slight abnormalities of the hands and feet. Array comparative genomic hybridization revealed a 393 kb microdeletion in 7p11.2. We discuss the possible involvement of CHCHD2, GBAS, MRPS17, SEPT14 and PSPH on our patient's phenotype. Additionally, we studied the expression of two other genes deleted in the patient, CCT6A and SUMF2, for which there is scarce data in the literature. Based on current knowledge and the de novo occurrence of this finding in our proband we presume that the aberration is likely to be pathogenic in our case. However, a single gene disorder, elsewhere in the genome or in this very region cannot be ruled out. Further elucidation of the properties of this chromosomal region, as well as of the role of the genes involved will be needed in order to draw safe conclusions regarding the association of the chromosomal deletion with the patient's features.

12.
Artículo en Inglés | MEDLINE | ID: mdl-24212143

RESUMEN

The role of sulfation in ameliorating the hepatotoxicity of bile acids (BAs) in humans remains unknown due to the lack of proper analytical methods to quantify individual BAs and their sulfate metabolites in biological tissues and fluids. To this end, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to characterize the detailed BA profile in human urine and serum. The limit of quantification was 1ng/mL and baseline separation of all analytes was achieved within in a run time of 32min. The method was validated over the dynamic range of 1-1000ng/mL. The LC-MS/MS method was more accurate, precise, and selective than the commercially available kits for the quantification of sulfated and unsulfated BAs, and the indirect quantification of individual sulfated BAs after solvolysis. The LC-MS/MS method was applied to characterize the BA profile in urine and serum of healthy subjects. Thirty three percent of serum BAs were sulfated, whereas 89% of urinary BAs existed in the sulfate form, indicating the role of sulfation in enhancing the urinary excretion of BAs. The percentage of sulfation of individual BAs increased with the decrease in the number of hydroxyl groups indicating the role of sulfation in the detoxification of the more hydrophobic and toxic BA species. Eighty percent of urinary BAs and 55% of serum BAs were present in the glycine-amidated form, whereas 8% of urinary BAs and 13% of serum BAs existed in the taurine-amidated form.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/orina , Sulfatos/sangre , Sulfatos/orina , Adulto , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida/métodos , Femenino , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sulfatos/química , Sulfatos/metabolismo , Espectrometría de Masas en Tándem/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA