Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 87(9): 981-990, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37280168

RESUMEN

The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a ß-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.


Asunto(s)
Proteínas Bacterianas , Hexosiltransferasas , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Sacarosa/metabolismo
2.
Biosci Biotechnol Biochem ; 85(8): 1830-1838, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34021568

RESUMEN

Information about the inulosucrase of nonlactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the Gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0-9.0 and 50-55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multiangle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3-27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.


Asunto(s)
Bacillaceae/enzimología , Hexosiltransferasas/metabolismo , Bacillaceae/genética , Cromatografía Líquida de Alta Presión/métodos , Clonación Molecular , Medios de Cultivo , Genes Bacterianos , Hexosiltransferasas/genética , Hexosiltransferasas/aislamiento & purificación , Inulina/biosíntesis , Espectroscopía de Resonancia Magnética/métodos , Peso Molecular , Filogenia , Temperatura
3.
FEBS J ; 288(19): 5723-5736, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33783128

RESUMEN

Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed ß-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.


Asunto(s)
Apoenzimas/ultraestructura , Halobacteriaceae/ultraestructura , Hexosiltransferasas/ultraestructura , Conformación Proteica , Apoenzimas/química , Archaea/enzimología , Archaea/ultraestructura , Cristalografía por Rayos X , Halobacteriaceae/enzimología , Hexosiltransferasas/química , Pliegue de Proteína , Sacarosa/química , Trisacáridos/química
4.
Biosci Biotechnol Biochem ; 84(12): 2508-2520, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32752982

RESUMEN

An enzyme belonging to glycoside hydrolase family 68 (GH68) from Beijerinckia indica subsp. indica NBRC 3744 was expressed in Escherichia coli. Biochemical characterization showed that the enzyme was identified to be a ß-fructosyltransferase (BiBftA). Crystallization of a full-length BiBftA was initially attempted, but no crystals were obtained. We constructed a variant in which 5 residues (Pro199-Gly203) and 13 residues (Leu522-Gln534) in potentially flexible regions were deleted, and we successfully crystallized this variant BiBftA. BiBftA is composed of a five-bladed ß-propeller fold as in other GH68 enzymes. The structure of BiBftA in complex with fructose unexpectedly indicated that one ß-fructofuranose (ß-Fruf) molecule and one ß-fructopyranose molecule bind to the catalytic pocket. The orientation of ß-Fruf at subsite -1 is tilted from the orientation observed in most GH68 enzymes, presenting a second structure of a GH68 enzyme in complex with the tilted binding mode of ß-Fruf.


Asunto(s)
Beijerinckiaceae/enzimología , Fructosa/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Glicósido Hidrolasas/genética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Relación Estructura-Actividad
5.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877648

RESUMEN

Given its potential role in the synthesis of novel prebiotics and applications in the pharmaceutical industry, a strong interest has developed in the enzyme levansucrase (LSC, EC 2.4.1.10). LSC catalyzes both the hydrolysis of sucrose (or sucroselike substrates) and the transfructosylation of a wide range of acceptors. LSC from the Gram-negative bacterium Erwinia tasmaniensis (EtLSC) is an interesting biocatalyst due to its high-yield production of fructooligosaccharides (FOSs). In order to learn more about the process of chain elongation, we obtained the crystal structure of EtLSC in complex with levanbiose (LBS). LBS is an FOS intermediate formed during the synthesis of longer-chain FOSs and levan. Analysis of the LBS binding pocket revealed that its structure was conserved in several related species. The binding pocket discovered in this crystal structure is an ideal target for future mutagenesis studies in order to understand its biological relevance and to engineer LSCs into tailored products.


Asunto(s)
Proteínas Bacterianas/metabolismo , Disacáridos/metabolismo , Erwinia/metabolismo , Fructanos/metabolismo , Hexosiltransferasas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Erwinia/química , Hexosiltransferasas/química , Modelos Moleculares , Oligosacáridos/metabolismo , Conformación Proteica , Sacarosa/química
6.
Carbohydr Polym ; 179: 350-359, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111061

RESUMEN

Fructooligosaccharides (FOS) and inulin, composed of ß-2-1 linked fructose units, have a broad range of industrial applications. They are known to have various beneficial health effects and therefore have broad application potential in nutrition. For (modified) inulin also for non-food purposes more applications are arising. Examples are carboxymethylated inulin as anti-scalant and carboymlated inulin as emulsifiers. Various plants synthesize FOS and/or inulin type of fructans. However, isolating of FOS and inulin from plants is challenging due to for instance varying chains length. There is an increasing demand for FOS and inulin oligosaccharides and alternative procedures for their synthesis are attractive. We identified and characterized two fructosyltransferases from Bacillus agaradhaerens WDG185. FosA, a ß-fructofuranosidase, synthesises short chain fructooligosaccharides (GF2-GF4) at high sucrose concentration, whereas InuO, an inulosucrase, synthesises a broad range of inulooligosaccharides (GF2-GF24) from sucrose, very similar to plant derived inulin. FosA and InuO showed activity over a broad pH range from 6 to 10 and optimal temperature at 60°C. Calcium ions and EDTA were found to have no effect on the activity of both enzymes. Kinetic analysis showed that only at relatively low substrate concentrations both enzymes showed Michaelis-Menten type of kinetics for total and transglycosylation activity. Both enzymes showed increased transglycosylation upon increasing substrate concentrations. These are the first examples of the molecular and biochemical characterization of a ß-fructofuranosidase (FosA) and an inulosucrase enzyme (InuO) and its product from a Bacillus agaradhaerens strain.


Asunto(s)
Bacillus/enzimología , Hexosiltransferasas/química , Hexosiltransferasas/aislamiento & purificación , Inulina/biosíntesis , beta-Fructofuranosidasa/biosíntesis , Bacillus/genética , Calcio/química , Ácido Edético/química , Fructosa/metabolismo , Glucosa/metabolismo , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Oligosacáridos/metabolismo , Análisis de Secuencia de Proteína , Sacarosa/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA