Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Phytomedicine ; 133: 155931, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39116604

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders. Accumulated evidence has suggested the indispensable role of kisspeptin-G protein-coupled receptor (GPR54) system and SHBG in development of PCOS. However, potential mechanisms and their relationship are unclear. Jiawei Buzhong Yiqi Decoction (JWBZYQ) has been reported to ameliorate obese PCOS. Whereas, potential mechanisms remain elusive. PURPOSE: To determine whether JWBZYQ attenuates PCOS by regulating the kisspeptin-GPR54 system and SHBG production. And to explore potential mechanisms. METHODS: An overweight PCOS rat model was developed with testosterone propionate (TP) and high-fat diet (HFD). The efficacy of JWBZYQ was assessed by tracking changes in weight, estrous cycle, ovarian morphology, and serum sex hormone levels. Additionally, kisspeptin-GPR54 system expression in multiple organs and PI3K-AKT pathway activity in liver of different rats were detected. Modifications in SHBG production were also measured. Kisspeptin54 was administered to establish a cellular model. The levels of AKT phosphorylation and SHBG protein within HepG2 cells were analyzed. Finally, confirmatory studies were performed using AKT phosphorylation activator and inhibitor. RESULTS: JWBZYQ effectively attenuated the overweight, disrupted estrous cycle, altered sex hormone levels, and aberrant ovarian morphology in PCOS rats. Meanwhile, PCOS rats exhibited elevated levels of kisspeptin and GPR54, along with reduced SHBG levels, which could be reversed by JWBZYQ. These alterations might be connected with the activation of AKT phosphorylation. In vitro experiment identified that JWBZYQ could rectify the hyperactivated AKT phosphorylation and deficient production of SHBG caused by kisspeptin54. CONCLUSIONS: Overexpressed kisspeptin-GPR54 system inhibited SHBG synthesis in PCOS. JWBZYQ curtailed the exorbitant expression of kisspeptin and GPR54, which moderated the rise in AKT phosphorylation and subsequently promoted the production of SHBG.

2.
Anim Reprod Sci ; 268: 107546, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964214

RESUMEN

The red spotted grouper Epinephelus akaara is a marine species of economic importance and also at risk of extinction. This study investigated the effects of high water temperature on the growth and maturation of juvenile E. akaara females. From 160-420 days post-hatching (dph), the fish were maintained under natural water temperature (NT) and a constant high-water temperature (HT). From 240 dph, both the total length and body weight in the HT group were greater than in NT group. After 360 dph, the gonadosomatic index was also increased in the HT group compared to NT group. Mature oocytes were only observed in the HT group at 330, 360, and 390 dph. Both kiss1 and kiss2 levels increased at 240 and 270 dph in both groups; however, they were greater in the HT group at 240 dph. Similarly, gpr54 levels after 360 dph were greater in the HT group, suggesting that kisspeptin is related to maturation via its receptor gpr54. Levels of fshß and lhß were greater in the HT group after 360 dph. Estradiol-17ß (E2) levels after 160 dph (except 300 dph) were greater in the HT group than in the NT group, suggesting that the higher E2 levels trigger maturation, and is related to increased fshß and lhß. This study provides evidence that high water temperature is effective in accelerating growth and triggering early maturation of juvenile E. akaara, via regulating gpr54, fshß, lhß, and E2 levels.


Asunto(s)
Maduración Sexual , Animales , Maduración Sexual/fisiología , Femenino , Calor , Lubina/fisiología , Lubina/crecimiento & desarrollo , Encéfalo/metabolismo , Hipófisis/metabolismo , Hipófisis/fisiología , Perciformes/fisiología , Perciformes/crecimiento & desarrollo , Reproducción/fisiología , Estradiol/sangre , Estradiol/metabolismo , Gónadas/fisiología
3.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703793

RESUMEN

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Asunto(s)
Administración Intranasal , Cuerpo Estriado , Dopamina , Neuronas Dopaminérgicas , Kisspeptinas , Oxidopamina , Trastornos Parkinsonianos , Ratas Sprague-Dawley , Sustancia Negra , Animales , Masculino , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Dopamina/metabolismo , Oxidopamina/farmacología , Ratas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Kisspeptinas/administración & dosificación , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad , Actividad Motora/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
4.
Int J Biol Macromol ; 268(Pt 2): 131868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677690

RESUMEN

Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fibrilina-1/metabolismo , Fibrilina-1/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Masculino , Transducción de Señal , Modelos Animales de Enfermedad , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ratones Noqueados
5.
J Biochem Mol Toxicol ; 38(4): e23699, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532648

RESUMEN

The endocrine disruptor hexavalent chromium [Cr(VI)] is a proven reproductive toxicant. We recently demonstrated that prenatal Cr(VI) exposure causes testicular resistance to gonadotropins, resulting in hypergonadotropic hypoandrogenism in F1 rats. However, the mechanism driving hypergonadotropism in F1 rats exposed to Cr(VI) prenatally remains an enigma. Therefore, we hypothesized that 'Prenatal Cr(VI) exposure may disrupt steroid hormones-mediated negative feedback regulation of the hypothalamic GnRH, and its receptor in the pituitary of F1 rats, leading to hypergonadotropism.' We administered potassium dichromate (50, 100, or 200 mg/L) to pregnant rats through drinking water between days 9 and 14, and their male F1 offspring were euthanized at 60 days of age. Prenatal Cr(VI) exposure in F1 rats resulted in the accumulation of Cr in the hypothalamus and pituitary. Western blot detected decreased hypothalamic GnRH, Kisspeptin1, and its receptor GPR54, along with diminished ERα, AR, aromatase, and 5α reductase, and GnRH regulatory transcription factors Pit-1 and GATA-4 proteins. Immunohistochemical studies revealed increased immunopositivity of GnRH receptor, AR, 5α reductase, ERα, ERß, and aromatase proteins in the pituitary, whereas decreased Kisspeptin1, GPR54, and inhibin ß. Our findings imply that Cr(VI) exposure during the prenatal period disrupts the hypothalamic Kisspeptin-GPR54-Pit-1/GATA4-GnRH network, boosting the pituitary GnRH receptor. We conclude that prenatal exposure to Cr(VI) alters GnRH expression in the hypothalamus and its receptor in the pituitary of F1 progeny through interfering with the negative feedback effect of androgens and estrogens.


Asunto(s)
Cromo , Efectos Tardíos de la Exposición Prenatal , Receptores LHRH , Femenino , Embarazo , Humanos , Ratas , Masculino , Animales , Receptores LHRH/metabolismo , Receptor alfa de Estrógeno/metabolismo , Aromatasa , Efectos Tardíos de la Exposición Prenatal/metabolismo , Hipotálamo , Hormona Liberadora de Gonadotropina/metabolismo
6.
Am J Reprod Immunol ; 91(2): e13818, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38414308

RESUMEN

PROBLEM: Immune factors are crucial in the development of recurrent spontaneous abortion (RSA). This study aimed to investigate whether kisspeptin regulates immune cells at the maternal-fetal interface and whether G protein-coupled receptor 54 (GPR54) is involved in this process, through which it contributes to the pathogenesis of RSA. METHOD OF STUDY: Normal pregnancy (NP) (CBA/J × BALB/c) and RSA (CBA/J × DBA/2) mouse models were established. NP mice received tail vein injections of PBS and KP234 (blocker of kisspeptin receptor), whereas RSA mice received PBS and KP10 (active fragment of kisspeptin). The changes in immune cells in mouse spleen and uterus were assessed using flow cytometry and immunofluorescence. The expression of critical cytokines was examined by flow cytometry, ELISA, Western blotting, and qPCR. Immunofluorescence was employed to detect the coexpression of FOXP3 and GPR54. RESULTS: The findings revealed that the proportion of Treg cells, MDSCs, and M2 macrophages in RSA mice was lower than that in NP mice, but it increased following the tail vein injection of KP10. Conversely, the proportion of these cells was reduced in NP mice after the injection of KP234. However, the trend of γδT cell proportion change is contrary to these cells. Furthermore, FOXP3 and GPR54 were coexpressed in mouse spleen and uterus Treg cells as well as in the human decidua samples. CONCLUSION: Our results suggest that kisspeptin potentially participates in the pathogenesis of RSA by influencing immune cell subsets at the maternal-fetal interface, including Treg cells, MDSC cells, γδT cells, and M2 macrophages.


Asunto(s)
Aborto Habitual , Aborto Espontáneo , Embarazo , Femenino , Humanos , Animales , Ratones , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Aborto Habitual/metabolismo , Factores de Transcripción Forkhead/metabolismo , Decidua
7.
Food Chem Toxicol ; 183: 114258, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040238

RESUMEN

This study evaluated the effects of Cl3BPA on kisspeptin-G-protein coupled receptor 54 (GPR54)/gonadotropin-releasing hormone (GnRH) (KGG) signals and analyzed the roles of estrogen receptor alpha (ERɑ) and G-protein coupled estrogen receptor 1 (GPER1) in regulating KGG signals. The results showed that Cl3BPA at 50 µM increased the levels of intracellular reactive oxygen species (ROS) and GnRH, upregulated the protein levels of kisspeptin and the expression of fshr, lhr and gnrh1 genes related to KGG in GT1-7 cells. In addition, 50 µM Cl3BPA significantly upregulated the phosphorylation of extracellular regulated protein kinases 1/2 (Erk1/2), the protein levels of GPER1 and the expression of the gper1 as well as the most target genes associated with mitogen-activated protein kinase (MAPK)/Erk1/2 pathways. Specific signal inhibitor experiments found that Cl3BPA activated KGG signals by activating the GPER1-mediated MAPK/Erk1/2 signaling pathway at the mRNA level. A docking test further confirmed the interactions between Cl3BPA and GPER1. The findings suggest that Cl3BPA might induce precocious puberty by increasing GnRH secretion together with KGG signaling upregulation, which is driven by GPER1-mediated signaling pathway. By comparison, ClxBPAs with fewer chlorine atoms had more obvious effects on the expression of proteins and partial genes related to KGG signals in GT1-7 cells.


Asunto(s)
Kisspeptinas , Maduración Sexual , Kisspeptinas/genética , Kisspeptinas/metabolismo , Kisspeptinas/farmacología , Línea Celular , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Transducción de Señal
8.
Reprod Toxicol ; 123: 108502, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984602

RESUMEN

The impact of pesticides on reproductive health has been increasingly recognized. ß-cypermethrin (ß-CYP) and emamectin benzoate (EMB) are commonly used with agricultural workers. There are few published studies on the effects of combined poisoning of these two pesticides on the reproductive system. This study investigated the toxic effects and mechanism of ß-CYP and EMB on the reproductive system of female rats based on the hypothalamic-pituitary-ovarian (HPO) axis. The hypothalamic GnRH content tended to decrease, and Kiss-1 and GPR-54 mRNA and protein expression tended to increase in exposed rats. FSH content was elevated for the pituitary gland, and Kiss-1 and GPR-54 mRNA and protein expression were enhanced in all experimental groups compared with the control group. E2 content in rat ovaries and ERα mRNA and protein expression were reduced by ß-CYP and EMB. Furthermore, there were interactive effects of ß-CYP and EMB on FSH and E2 release, pituitary GPR-54 mRNA and protein, and ovarian ERα mRNA expression. To investigate causes of damage, oxidative damage indicators were tested and showed that exposure to ß-CYP and EMB decreased GSH-Px and SOD activities in the HPO axis, increased MDA levels in the hypothalamus and ovary together with LDH activities in the HPO axis, with an interaction effect on GSH-Px and SOD activities in the hypothalamus and pituitary gland as well as on MDA in the ovary. The above results support the screening of sensitive molecular biomarkers and evaluation of the adverse effects of pesticide exposure in greenhouse operations on reproductive health.


Asunto(s)
Ivermectina/análogos & derivados , Ovario , Plaguicidas , Piretrinas , Ratas , Femenino , Animales , Ovario/metabolismo , Receptor alfa de Estrógeno/metabolismo , Kisspeptinas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Folículo Estimulante , Estrés Oxidativo , Homeostasis , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
9.
Autoimmunity ; 57(1): 2297564, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38155490

RESUMEN

Recurrent spontaneous abortions (RSA) affect reproductive health and increase the risk of subsequent abortions. To investigate the role of KISS-1/GPR-54 signaling in RSA progression. Villus tissue was collected from RSA patients, and human trophoblastic HTR-8/SVneo cells were used. KISS-1 and GRP54 levels were detected using RT-qPCR and immunohistochemistry. Western blotting was performed to analyze ZO-1 and ZEB1 levels. Cell proliferation was determined via CCK-8 and cell clone formation assays. Transwell assays were performed to assess cell migration and invasion abilities. KISS-1 was down-regulated in the villus tissues of RSA patients. KISS-1 overexpression dramatically inhibited trophoblast proliferation, migration, and invasion. Mechanistically, ZEB1 expression was down-regulated, whereas ZO-1 expression was up-regulated, after KISS-1 overexpression. GPR54 silencing neutralized the effect of KISS-1 in HTR-8/SVneo cells. Additionally, KISS-1 overexpression inactivated the PI3K/AKT signaling pathway through GRP54. The KISS-1/GPR-54 signaling axis regulates RSA progression by regulating the PI3K/AKT signaling pathway.


Asunto(s)
Preeclampsia , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Embarazo , Movimiento Celular/genética , Proliferación Celular , Kisspeptinas/genética , Kisspeptinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Preeclampsia/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047030

RESUMEN

The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.


Asunto(s)
Kisspeptinas , Neuroblastoma , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Apoptosis , Kisspeptinas/genética , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo
11.
Cancers (Basel) ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831570

RESUMEN

Kisspeptin (KISS) is a natural peptide-discovered in 1996 as a factor inhibiting the ability to metastasize in malignant melanoma. This protein plays also a regulatory role in the process of puberty, the menstrual cycle, spermatogenesis, implantation and development of the human placenta. The present study aimed to evaluate the expression of KISS and its receptor GPR54 in endometrial cancer (EC) tissue, depending on the histological type of cancer, its stage, various demographic characteristics, and clinical conditions in 214 hysterectomy patients. Expression of KISS and GPR54 was confirmed in 99.5% and 100% of the cases, respectively. Hormone replacement therapy and the coexistence of the anti-Müllerian type 2 receptor in cancer tissue enhanced KISS expression. Smoking, on the other hand, decreased KISS expression. GPR54 expression increased with the advancement of the disease (according to FIGO classification). Also, the presence of the anti-Müllerian type 2 receptor in EC increased the level of GPR54. Hypertension, age and miscarriage harmed the presence of GPR54. The histological type of cancer, diabetes type 2, body mass index, hormonal contraception, number of deliveries, birth weight of newborns, breastfeeding time, and the presence of AMH in EC tissue were not associated with the expression of either KISS nor GPR54. The KISS level was also significantly related to the GPR54 level. Considering that KISS is a non-toxic peptide with antimetastatic properties, further investigation is essential to determine the clinical significance of this peptide.

12.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38256878

RESUMEN

Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade, increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to evaluate the developed KISS1-54 derivative, [68Ga]KISS1-54, as a PET-imaging probe for KISS1R-expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability of the resulting [68Ga]KISS1-54 evaluated in injection solution and human serum, followed by an examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231, MCF7, LNCap, SK-BR-3, and HCT116. Finally, [68Ga]KISS1-54 was tested in LNCap- and MDA-MB-231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [68Ga]KISS1-54 was obtained in a 77 ± 7% radiochemical yield and at a >99% purity. The [68Ga]KISS1-54 cell uptake amounted to 0.6-4.4% per 100,000 cells. Moreover, the accumulation of [68Ga]KISS1-54 was effectively inhibited by nonradioactive KISS1-54. In [68Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular KISS1R expression. Our first results suggest that [68Ga]KISS1-54 is a promising candidate for a radiotracer for targeting KISS1R-expressing tumors via PET.

13.
Microbiome ; 10(1): 194, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376894

RESUMEN

BACKGROUND: Seasonal breeding in mammals has been widely recognized to be regulated by photoperiod, but the association of gut microbiota with photoperiodic regulation of seasonal breeding has never been investigated. RESULTS: In this study, we investigated the association of gut microbiota with photoperiod-induced reproduction in male Brandt's voles (Lasiopodomys brandtii) through a long-day and short-day photoperiod manipulation experiment and fecal microbiota transplantation (FMT) experiment. We found photoperiod significantly altered reproductive hormone and gene expression levels, and gut microbiota of voles. Specific gut microbes were significantly associated with the reproductive hormones and genes of voles during photoperiod acclimation. Transplantation of gut microbes into recipient voles induced similar changes in three hormones (melatonin, follicle-stimulating hormone, and luteinizing hormone) and three genes (hypothalamic Kiss-1, testicular Dio3, and Dio2/Dio3 ratio) to those in long-day and short-day photoperiod donor voles and altered circadian rhythm peaks of recipient voles. CONCLUSIONS: Our study firstly revealed the association of gut microbiota with photoperiodic regulation of seasonal breeding through the HPG axis, melatonin, and Kisspeptin/GPR54 system. Our results may have significant implications for pest control, livestock animal breeding, and human health management. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Animales , Humanos , Masculino , Fotoperiodo , Microbioma Gastrointestinal/genética , Melatonina/metabolismo , Estaciones del Año , Arvicolinae/fisiología
14.
Cells ; 11(19)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36231110

RESUMEN

The Kiss1/GPR54 system is a multifunctional genetic system with an essential role in regulating energy balance and metabolic homeostasis. In the mammalian hypothalamus, two major populations of neurons, the rostral periventricular region of the third ventricle (RP3V) and the arcuate nucleus (ARC), produced kisspeptin. Kiss1ARC neurons input kisspeptin and glutamate to feeding-associated neurons to regulate energy intake and expenditure balance. Kisspeptin in the peripheral circulation is involved in lipid accumulation in adipose tissue. In the hepatic and pancreatic circuits, kisspeptin signaling affects insulin secretion, suggesting the critical role of the Kiss1/GPR54 system in regulating glucose and lipid metabolism. In addition, this review also predicts the role of the Kiss1/GPRS4 system in skeletal muscle in association with exercise performance. Recent studies have focused on the link between kisspeptin signaling and energy homeostasis, further investigation of potential function is warranted. Therefore, this review summarizes the role of the Kiss1/GPRS4 system in the major metabolic organs in relation to energy metabolism homeostasis, aiming to endow the reader with a critical and updated view of the Kiss1/GPR54 system in energy metabolism.


Asunto(s)
Metabolismo Energético , Kisspeptinas , Animales , Glucosa , Glutamatos/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lípidos , Mamíferos/metabolismo
15.
Mol Nutr Food Res ; 66(24): e2200486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106654

RESUMEN

SCOPE: Puberty timing, critical for adulthood wellbeing, is influenced by the environment, life-style, and diets. However, differential puberty-interfering effects of soy and soy isoflavone are observed in both epidemiological and toxicological studies. Additionally, their impact on neuroendocrine function at various pre-pubertal developmental windows is unclear. METHODS AND RESULTS: This study investigates the effect of genistein, a typical soy isoflavone, at neonatal, lactational, and post-weaning stages on the time of vaginal opening and determines the levels of neuroendocrine factors in female rats using immunofluorescence, immunochemistry, and enzyme-linked immunosorbent assays. A physiologically relevant dosage (10 mg kg-1 ) is used to resemble human exposure. The results show that genistein exposure at lactational stage significantly accelerates vaginal opening time, marginally increases hypothalamic gonadotropin-releasing hormone (GnRH) secretion, significantly enhances kisspeptin receptor expression, and markedly elevates blood levels of GnRH, luteinizing hormone, and follicle-stimulating hormone, while neonatal and post-weaning exposures do not induce significant alternations. CONCLUSION: Lactational stage may be an important window for genistein to impact reproductive development and neuroendocrine regulations.


Asunto(s)
Genisteína , Maduración Sexual , Animales , Femenino , Ratas , Genisteína/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Kisspeptinas/metabolismo , Kisspeptinas/farmacología , Hormona Luteinizante/farmacología , Maduración Sexual/fisiología
16.
Hormones (Athens) ; 21(4): 641-652, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36001287

RESUMEN

BACKGROUND: Kiss-1 neuron, one of the metabolic sensors in the hypothalamus, is necessary for puberty initiation. It acts through G protein-coupled receptor, known as GPR54. In this study, the mechanism of the hypothalamic Kiss-1-GPR54 signaling pathway in a high-fat diet and exercise was investigated in growing male rats. METHODS: A total of 135 3-week-old male weaned rats were kept on a high-fat diet (HFD) and exercise (60-70% [Formula: see text], 1 h/day, 5 days/week). They were randomly divided, as follows: control group (C); normal diet + exercise group (CE); HFD group (H); and HFD + exercise group (HE). Hypothalamus, testis, and serum samples of each group were collected on postnatal day (PND) 21 (early childhood), 43 (puberty), and 56 (maturity). Immunofluorescence, quantitative real-time PCR, hematoxylin and eosin staining, and chemiluminescent immunoassays were used in the study. ANOVA was used to analyze the effects of age (PNDs 21, 43, and 56), exercise (exercise and sedentariness), and diet (high-fat and normal) on the biological indices of rats. RESULTS: mRNA and protein expression of Kiss-1 and GPR54 in the hypothalamus gradually increased along with growth and peaked at PND 43, while those in serum testosterone increased and peaked at PND 56. The high-fat diet increased the expression of the Kiss-1-GPR54 system in the hypothalamus, whereas the serum testosterone decreased during different stages of growth. Exercise decreased the expression of Kiss-1 at PND 56 and increased it at PND 43. Meanwhile, it decreased testosterone and the deposition of lipid droplets in the testis at all ages of development. CONCLUSIONS: The expression of Kiss-1-GPR54 in male rats showed fluctuating changes during growth and development. The high-fat diet was able to upregulate the expression of the Kiss-1-GPR54 system in the hypothalamus. The exercise was able to correct the adverse effect of the high-fat diet on the Kiss-1-GPR54 signaling pathway in the hypothalamus and the function of the hypothalamic-pituitary-gonadal (HPG) axis, but had age-specific effects on the male rats' development.


Asunto(s)
Kisspeptinas , Carrera , Animales , Masculino , Ratas , Dieta Alta en Grasa/efectos adversos , Hipotálamo , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/metabolismo , Transducción de Señal , Testosterona/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 917258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909525

RESUMEN

Kisspeptin has an important role in the regulation of reproduction by directly stimulating the secretion of gonadotropin-releasing hormone (GnRH) in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and kisspeptin receptor types, and the two kisspeptins in teleosts have different effects depending on fish species and reproductive stages, serving reproductive and non-reproductive functions. In the grass puffer, Takifugu alboplumbeus, which has only a single pair of kiss2 and kissr2, both genes display seasonal, diurnal, and circadian oscillations in expression in association with the periodic changes in reproductive functions. To elucidate the role of kisspeptin in this species, homologous kisspeptin peptide (gpKiss2) was administered at different reproductive stages (immature, mature and regressed) and the expression levels of the genes that constitute hypothalamo-pituitary-gonadal axis were examined in male grass puffer. gpKiss2 significantly elevated the expression levels of kissr2 and gnrh1 in the brain and kissr2, fshb and lhb in the pituitary of the immature and mature fish. No noticeable effect was observed for kiss2, gnih, gnihr, gnrh2 and gnrh3 in the brain and gpa in the pituitary. In the regressed fish, gpKiss2 was ineffective in stimulating the expression of the gnrh1 and GTH subunit genes, while it stimulated and downregulated the kissr2 expression in the brain and pituitary, respectively. The present results indicate that Kiss2 has a stimulatory role in the expression of GnRH1/GTH subunit genes by upregulating the kissr2 expression in the brain and pituitary at both immature and mature stages, but this role is mostly ineffective at regressed stage in the grass puffer.


Asunto(s)
Kisspeptinas , Takifugu , Animales , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Gónadas/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Mamíferos/metabolismo , Reproducción/fisiología , Takifugu/genética , Takifugu/metabolismo
18.
Int J Mol Sci ; 23(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563582

RESUMEN

The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-ß (Aß) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aß toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn's non-amyloid-ß component (NAC) and Aß's C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn's deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01-1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of -118.049 kcal/mol and -114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.


Asunto(s)
Kisspeptinas , alfa-Sinucleína , Péptidos beta-Amiloides/metabolismo , Colinérgicos , Humanos , Kisspeptinas/genética , Kisspeptinas/farmacología , ARN Mensajero , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-35417786

RESUMEN

The bisphenol A (BPA)-disrupted reproductive functions have been demonstrated in male animals. In fish, it has been shown that environmentally relevant concentrations of BPA decrease sperm quality associated with inhibition of androgen biosynthesis. However, BPA effects on neuroendocrine regulation of reproduction to affect testicular functions are largely unknown. In the present study, reproductive functions of hypothalamus and pituitary were studied in mature male goldfish exposed to nominal 0.2, 2.0 and 20.0 µg/L BPA. At 90 d of exposure, sperm volume, velocity, and density and motility were decreased in goldfish exposed to 0.2, 2.0, and 20.0 µg/L BPA, respectively (p < 0.05). At 30 d of exposure, there were no significant changes in circulatory LH levels and mRNA transcripts of kiss1, Kiss2, gpr54, and gnrh3. At 90 d of exposure, circulatory LH levels showed trends toward increases in BPA exposed goldfish, which was significant in those exposed to 2.0 µg/L (P < 0.05). At this time, Kiss2, gpr54, and gnrh3 mRNA levels were increased in goldfish exposed to any concentrations of BPA (p < 0.05). This study shows that BPA-diminished sperm quality was accompanied by an increase in circulatory LH levels associated with increases in mRNA transcripts of upstream neuroendocrine regulators of reproduction in goldfish. Further, this is the first study to report circulatory levels of LH in fish exposed to BPA.


Asunto(s)
Carpa Dorada , Hormona Liberadora de Gonadotropina , Animales , Compuestos de Bencidrilo , Carpa Dorada/genética , Hormona Liberadora de Gonadotropina/genética , Masculino , Fenoles , Ácido Pirrolidona Carboxílico/análogos & derivados , ARN Mensajero/genética , Espermatozoides
20.
Ecotoxicol Environ Saf ; 233: 113290, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158255

RESUMEN

Chlorobisphenol A (ClxBPA) is a kind of novel estrogenic compounds. The present study aims to investigate the effects of three ClxBPA compounds on the kisspeptin/G protein-coupled receptor 54 (GPR54, also named KissR1)-gonadotropin-releasing hormone (GnRH) (KGG) system in neuronal GT1-7 cells with mechanistic insights by estrogen receptor signaling pathways. The study demonstrated that low-concentration ClxBPA induced the cell proliferation, promoted GnRH secretion, upregulated the expression of KGG neuroendocrine signal-related proteins (KissR1, GnRH1 and kisspeptin) and genes including Kiss1, GnRH1, KissR1, luteinizing hormone receptor (Lhr) and follicle-stimulating hormone receptor (Fshr) in GT1-7 cells. Additionally, ClxBPA activated nuclear estrogen receptor alpha (ERα) and member estrogen receptor G protein-coupled estrogen receptor (GPER)-regulated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (Erk1/2) signaling pathways. Pretreatment of GT1-7 cells with GPER inhibitor G15 and ERα inhibitor ICI reduced the expression of KissR1, GnRH1 and kisspeptin proteins, attenuated mRNA levels of Kiss1, GnRH1, KissR1, Fshr and Lhr genes, and decreased ClxBPA-induced GT1-7 cell proliferation. The results suggested that ClxBPA activated the KGG neuroendocrine signals and induced the proliferation of GT1-7 cells via ERα and GPER signaling pathways. This study provides a new perspective to explore the neuroendocrine toxicity mechanism of ClxBPA. CAPSULE: ClxBPA activated KGG neuroendocrine signaling pathway via ERα and GPER and induced the proliferation of GT1-7 cells.


Asunto(s)
Receptor alfa de Estrógeno , Kisspeptinas , Línea Celular , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Fosfatidilinositol 3-Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA