Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Psychiatry ; 15: 1350978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840948

RESUMEN

Purpose: This study aims to examine the potential influence of RS4680 (COMT), RS16965628 (SLC6A4), and RS1019385 (GRIN2B) polymorphisms on the therapeutic response to repetitive transcranial magnetic stimulation (rTMS) and selective serotonin reuptake inhibitors (SSRIs) in individuals with obsessive-compulsive disorder (OCD). Patients and methods: Thirty-six untreated outpatients diagnosed with OCD were recruited and allocated to active or sham rTMS groups for two weeks. The mean age of the participants was 31.61, with 17 males (47.22%) and 19 females (52.78%). Peripheral blood samples (5 mL) were collected from each participant using ethylenediaminetetraacetic acid (EDTA) vacuum tubes for genotyping purposes, clinical evaluation was taken place at baseline and second week. Results: The A allele of RS4680, C allele of RS16965628, and GG allele of RS1019385 were identified as potential bio-markers for predicting treatment response to OCD treatments (rTMS & SSRIs). Conclusion: Those genes may serve as bio-markers for the combined treatment of rTMS and SSRIs in OCD. The finding hold promise for further research and the potential implementation of precision treatment of OCD. Clinical trial registration: https://www.chictr.org.cn, identifier ChiCTR1900023641.

2.
Cytogenet Genome Res ; : 1-11, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38934155

RESUMEN

INTRODUCTION: Neurodevelopmental disorders (NDDs) are diverse and can be explained by either genomic aberrations or single nucleotide variants. Most likely due to methodological approaches and/or disadvantages, the concurrence of both genetic events in a single patient has hardly been reported and even more rarely the pathogenic variant has been regarded as the cause of the phenotype when a chromosomal alteration is initially identified. CASE PRESENTATION: Here, we describe a NDD patient with a 6p nonpathogenic paracentric inversion paternally transmitted and a de novo pathogenic variant in the GRIN2B gene. Molecular-cytogenetic studies characterized the familial 6p inversion and revealed a paternal 9q inversion not transmitted to the patient. Subsequent whole-genome sequencing in the patient-father dyad corroborated the previous findings, discarded inversions-related cryptic genomic rearrangements as causative of the patient's phenotype, and unveiled a novel heterozygous GRIN2B variant (p.(Ser570Pro)) only in the proband. In addition, Sanger sequencing ruled out such a variant in her mother and thereby confirmed its de novo origin. Due to predicted disturbances in the local secondary structure, this variant may alter the ion channel function of the M1 transmembrane domain. Other pathogenic variants in GRIN2B have been related to the autosomal dominant neurodevelopmental disorder MRD6 (intellectual developmental disorder, autosomal dominant 6, with or without seizures), which presents with a high variability ranging from mild intellectual disability (ID) without seizures to a more severe encephalopathy. In comparison, our patient's clinical manifestations include, among others, mild ID and brain anomalies previously documented in subjects with MRD6. CONCLUSION: Occasionally, gross chromosomal abnormalities can be coincidental findings rather than a prime cause of a clinical phenotype (even though they appear to be the causal agent). In brief, this case underscores the importance of comprehensive genomic analysis in unraveling the wide-ranging genetic causes of NDDs and may bring new insights into the MRD6 variability.

3.
Cell Mol Life Sci ; 81(1): 235, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795169

RESUMEN

N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter  emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.


Asunto(s)
Pregnenolona , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Pregnenolona/farmacología , Pregnenolona/metabolismo , Humanos , Animales , Células HEK293 , Hipocampo/metabolismo , Mutación con Pérdida de Función , Multimerización de Proteína , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética
4.
Front Neurosci ; 18: 1385189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562305

RESUMEN

Introduction: Autism is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, and restricted repetitive behaviors. Hyperbaric oxygen therapy (HBOT) has emerged as a potential treatment for autism, although its effects on behavior and gene expression are not well understood. The GRIN2B gene, known for its involvement in encoding a glutamate receptor subunit crucial for neuron communication and associated with autism, was a focus of this study. Methods: Using a rat model induced by prenatal exposure to valproic acid, we examined the impact of HBOT on autism-like behaviors and GRIN2B gene expression. Male Wistar rats were categorized into four groups: control, VPA (valproic acid-exposed), VPA+HBOT [2 atmosphere absolute (ATA)], and VPA+HBOT (2.5 ATA). The rats underwent several behavioral tests to assess social behavior, anxiety, stereotype and exploratory behaviors, and learning. Following the behavioral tests, the HBOT groups received 15 sessions of HBOT at pressures of 2 and 2.5 (ATA), and their behaviors were re-evaluated. Subsequently, real-time PCR was employed to measure GRIN2B gene expression in the frontal lobe. Results: Our results indicated that HBOT significantly increased social interaction and exploratory behaviors in VPA-exposed rats, alongside elevated GRIN2B gene expression in their frontal lobe. Discussion: Our findings imply that HBOT might have a potential role in ameliorating autism-related behaviors in the VPA rat model of autism through potential modulation of GRIN2B gene expression. However, additional research is essential to fully comprehend the underlying mechanisms and refine the HBOT protocol for optimizing its effectiveness in improving autism-related symptoms.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38267766

RESUMEN

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Antígenos CD , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Cerebelo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Corteza Auditiva/metabolismo , Precursor de Proteína beta-Amiloide/genética , Anciano de 80 o más Años , Apolipoproteínas E/genética , Expresión Génica/genética , Estudios de Casos y Controles
6.
Mol Neurobiol ; 61(1): 42-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578679

RESUMEN

Attention-deficit hyperactivity disorder is a highly inherited neurodevelopmental disorder. Previous genetic research has linked ADHD to certain genes in the dopaminergic synaptic pathway. Nonetheless, research on this relationship has produced varying results across various populations. China is a multi-ethnic country with its own unique genetic characteristics. Therefore, such a population can provide useful information about the relationship between gene polymorphisms in dopaminergic synaptic pathways and ADHD. This study looked at the genetic profiles of 284 children in China's Xinjiang. In total, 142 ADHD children and 142 control subjects were enrolled. Following the extraction of DNA from oral mucosal cells, 13 SNPs for three candidate genes (SLC6A3, DRD2, and GRIN2B) in the dopaminergic synaptic pathway of ADHD were screened. Based on the results of single nucleotide polymorphism (SNP) analyses, we found that the DRD2 gene variants rs6277 and rs6275, and the SLC6A3 gene variant rs2652511, were significantly associated with ADHD in boys and girls, respectively, after adjusting for false discovery rate (FDR) in terms of allele frequencies. Furthermore, our generalized multifactorial downscaling approach identified a significant association between rs6275 and rs1012586. These findings suggest that DRD2 and SLC6A3 genes have a crucial role in ADHD susceptibility. Additionally, we observed that the interaction between GRIN2B and DRD2 genes may contribute to the susceptibility of Chinese children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Receptores de Dopamina D2 , Receptores de N-Metil-D-Aspartato , Niño , Femenino , Humanos , Masculino , Trastorno por Déficit de Atención con Hiperactividad/genética , Estudios de Casos y Controles , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/genética
7.
Contemp Clin Trials Commun ; 36: 101233, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144875

RESUMEN

Rationale: Loss-of-function (LoF) mutations in GRIN2B result in neurologic abnormalities due to N-methyl-D-aspartate receptor (NMDAR) dysfunction. Affected persons present with various symptoms, including intellectual developmental disability (IDD), hypotonia, communication deficits, motor impairment, complex behavior, seizures, sleep disorders and gastrointestinal disturbance. Recently, in vitro experiments showed that D-serine mitigates function to GluN2B (mutation)-containing NMDARs. 11 previous case reports are published on (experimental) L-serine treatment of patients between 1.5 and 12 years old with GRIN2B missense or null mutations, some of whom showed notable improvement in motor and cognitive performance, communication, behavior and abnormalities on electro encephalography (EEG). Our objective is to further evaluate the effectiveness of L-serine for GRIN2B-related neurodevelopmental disorder (GRIN2B-NDD), using an n-of-1 trial design, increasing the level of evidence. Methods/design: These n-of-1 trials, consisting of 2 cycles of 6 months, will be performed to evaluate the effect of L-serine compared to placebo in 4 patients with a GRIN2B LoF mutation. The aggregation of multiple n-of-1 trials will provide an estimate of the average treatment effects.The primary outcome is the Perceive-Recall-Plan-Perform of Task Analysis, assessing developmental skills. Secondary outcomes include Goal Attainment Scaling, seizure log books, EEGs, sleep log books, the irritability subscale of the Aberrant Behavior Checklist, the Bristol Stool Scale and the Pediatric Quality of Life Inventory. Conclusion: This study employs an innovative methodological approach to evaluate the effectiveness of L-serine for patients with a GRIN2B LoF mutation. The results will establish a foundation for implementing L-serine as a disease-modifying treatment in GRIN2B-NDD.

8.
Cureus ; 15(10): e46456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37927744

RESUMEN

Autosomal dominant intellectual development disorder-6 (MRD6) arises from a grin2b gene mutation, inducing neurodevelopmental issues. The effects of MRD6 encompass cognitive disabilities, seizures, muscle tone decline, and autism-like traits. Its severity ranges from mild impairment to severe epilepsy. The disorder's rarity is emphasized by roughly 100 reported GRIN2B-related cases, spotlighting the gene's significance in brain development. We present the case of a three-year-old Moroccan boy who was referred to a neuropediatric department for a molecular diagnosis. Initial genetic testing yielded inconclusive results, and subsequent tests for Angelman syndrome and metabolic diseases showed no abnormalities. Given the complexity of the disorder, exome sequencing was employed to identify the underlying genetic cause. Exome sequencing identified a nonsense (STOP) mutation c.3912C>G (p.Tyr1304Ter) in the grin2b gene in the heterozygous state known to be present in MRD6 (Online Mendelian Inheritance in Man (OMIM) 613970). The family segregation study shows that this is a de novo variant, which is confirmed by Sanger sequencing. This variant has not been previously reported in the GnomAD database. Based on current scientific knowledge, the variant is considered pathogenic (PVS1, PS2, PM2, PP3, PP5) according to the criteria of the American College of Medical Genetics and Genomics (ACMG). The mutation in the grin2b gene (p.Tyr1304Ter) was predicted to be deleterious through bioinformatics analysis tools. This study highlights the crucial role of the grin2b gene in normal brain development and communication within the nervous system. It also sheds light on the impact of a novel genetic mutation, identified through exome sequencing, on causing an intellectual developmental disorder in a child patient from Morocco.

9.
Neuron ; 111(21): 3378-3396.e9, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657442

RESUMEN

A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.


Asunto(s)
Dopamina , Proteómica , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Encéfalo/metabolismo , Dopamina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Modelos Animales de Enfermedad , Receptores de N-Metil-D-Aspartato/genética
10.
Genes Brain Behav ; 22(6): e12858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37519068

RESUMEN

Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Metilación de ADN , Masculino , Femenino , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Selección Artificial , Epigénesis Genética , Encéfalo/metabolismo , Hipocampo/metabolismo
11.
Neuroscience ; 526: 107-120, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37385334

RESUMEN

Epilepsy, a neurological condition, is widely prevalent among individuals with intellectual disability (ID). It is well established that N-methyl-D-aspartate (NMDA) receptors play an important role in both epilepsy and ID. Autosomal dominant mutations in the GRIN2B gene, which encodes the GluN2B subunit of the NMDA receptor, have been reported to be associated with epilepsy and ID. However, the underlying mechanism of this association is not well-understood. In this study, we identified a novel GRIN2B mutation (c.3272A > C, p.K1091T) in a patient with epilepsy and ID. The proband was a one year and ten months old girl. GRIN2B variant was inherited from her mother. We further investigated the functional consequences of this mutation. Our findings revealed that the p.K1091T mutation created a Casein kinase 2 phosphorylation site. Using recombinant NMDA receptors containing the GluN2B-K1091T along with GluN1 in HEK 293T cells, we observed significant defects in its interactions with postsynaptic density 95. It is accompanied by reduced delivery of the receptors to the cell membrane and a decrease in glutamate affinity. Moreover, primary neurons expressing GluN2B-K1091T also exhibited impaired surface expression of NMDA receptors, a reduction in dendritic spine number and excitatory synaptic transmission. In summary, our study reports a novel GRIN2B mutation and provides functional characteristics of this mutation in vitro, thereby contributing to the understanding of GRIN2B variants in epilepsy and ID.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Femenino , Humanos , Lactante , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación , Mutación Missense , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Behav Brain Res ; 445: 114377, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36868364

RESUMEN

Human use of marijuana at an early age has been reported to lead to cognitive impairment. However, researchers have not yet clearly determined whether this impairment is due to marijuana-induced alterations in the developing nervous system and whether this deficit persists into adulthood after marijuana use has ceased. We administered anandamide to developing rats to assess the effect of cannabinoids on development. We subsequently evaluated learning and performance on a temporal bisection task in adulthood and assessed the expression of genes encoding principal subunits of NMDA receptors (Grin1, Grin2A, and Grin2B) in the hippocampus and prefrontal cortex. Rats in two age groups, namely, 21-day-old and 150-day-old rats, received intraperitoneal injections of anandamide or the vehicle for 14 days. Both groups performed a temporal bisection test, which included listening to tones of different durations and classifying them as short or long. The expression of the Grin1, Grin2A and Grin2B mRNAs was evaluated using quantitative PCR in both age groups after extracting mRNA from the hippocampus and prefrontal cortex. We observed a learning impairment in the temporal bisection task (p < 0.05) and changes in the response latency (p < 0.05) in rats that received anandamide. Furthermore, these rats exhibited decreased expression of Grin2b (p = 0.001) compared to those that received the vehicle. In human subjects, the use of cannabinoids during development induces a long-term deficit, but this deficit is not observed in subjects who use cannabinoids in adulthood. Rats treated with anandamide earlier in development took longer to learn the task, suggesting that anandamide exerts a harmful effect on cognition in developing rats. Administration of anandamide during early stages of development induced deficits in learning and other cognitive processes that depend on an adequate estimation of time. The cognitive demands of the environment must be considered when evaluating the cognitive effects of cannabinoids on developing or mature brains. High cognitive demands might induce differential expression of NMDA receptors that improves cognitive capacity, overcoming altered glutamatergic function.


Asunto(s)
Cannabinoides , Alucinógenos , Percepción del Tiempo , Humanos , Ratas , Animales , Recién Nacido , Receptores de N-Metil-D-Aspartato , Aprendizaje , Hipocampo/fisiología
13.
Genes (Basel) ; 14(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36980845

RESUMEN

BACKGROUND: Personal variations in genetic risk for schizophrenia relate to its phenotypic heterogeneity-both in disorder development and clinical manifestations. Abnormal glutamatergic neurotransmitter system functioning is integrated in the pathogenesis of schizophrenia. METHODS: A sample of 805 Russian schizophrenia patients from the Siberian Federal region was investigated. We examined the association of 39 single nucleotide polymorphisms in eight genes (GRIN2A, GRIN2B, SLC1A2, SLC1A3, SLC17A7, GRM3, GRM7, and GRM8) involved in the glutamatergic system with the development of clinical heterogeneity of schizophrenia. The MassARRAY Analyzer 4 was used for genotyping. RESULTS: GRIN2A rs11644461, rs8057394 and GRIN2B rs7313149 are associated with the continuous type of schizophrenia. The GRIN2A rs8057394*G allele is a relative risk factor (p = 0.019) for developing the continuous type of schizophrenia. We found a nominally significant association between negative symptoms of schizophrenia and SLC17A7 rs62126236. The SLC17A7 rs62126236*T allele has a protective effect (p = 0.039) against predominant negative symptoms in schizophrenia. The total Positive and Negative Syndrome Scale (PANSS) scores were significantly associated with GRIN2A rs9788936 after adjusting for multiple testing (p = 0.001). CONCLUSIONS: In this study the contribution of the glutamatergic gene polymorphisms to the clinical heterogeneity of schizophrenia has been demonstrated.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Polimorfismo de Nucleótido Simple , Fenotipo , Alelos , Receptores de N-Metil-D-Aspartato/genética
14.
J Psychosom Res ; 168: 111210, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898314

RESUMEN

OBJECTIVE: To investigate the association of postpartum depressive symptoms (PDS) and self-harm ideation with n-methyl-d-aspartate (NMDA) receptor GRIN2B and GRIN3A gene polymorphisms and other risk factors in women undergoing cesarean section. METHODS: A total of 362 parturients undergoing cesarean section under lumbar anesthesia were selected and their postpartum depression level was assessed by the Edinburgh Postpartum Depression Scale (EPDS) at 42 days postpartum, with an EPDS score of 9/10 as the cut-off value. Three GRIN2B SNP loci (rs1805476, rs3026174, rs4522263) and five GRIN3A SNP loci (rs1983812, rs2050639, rs2050641, rs3739722, rs10989563) were selected for genotype detection. The role of each SNP, linkage disequilibrium and haplotypes in the development of postpartum depression was analyzed. Logistic regression analysis was performed for related risk factors. RESULTS: PDS incidence was 16.85%, and self-harm ideation incidence was 13.54%. Univariate analysis showed that GRIN2B rs1805476, rs3026174 and rs4522263 gene polymorphisms were associated with PDS (p < 0.05), with GRIN2B rs4522263 gene also associated with maternal self-harm ideation. GRIN3A rs1983812, rs2050639, rest rs2050641, rs3739722 and rs10989563 alleles were not associated with PDS. Logistic regression analysis indicated that high pregnancy stress, as well as rs1805476 and rs4522263 alleles were PDS risk factors following cesarean delivery. GRIN2B (TTG p = 0.002) and GRIN3A (TGTTC p = 0.002) haplotypes were associated with the lower PDS incidence and higher PDS incidence respectively. CONCLUSION: GRIN2B rs1805476 GG genotype, rs4522263 CC genotype and high stress during pregnancy were risk factors for PDS, whilst a significantly higher incidence of self-harm ideation was evident in parturients carrying GRIN2B rs4522263 CC genotype.


Asunto(s)
Cesárea , Depresión Posparto , Receptores de N-Metil-D-Aspartato , Conducta Autodestructiva , Femenino , Humanos , Embarazo , Cesárea/efectos adversos , Cesárea/psicología , Depresión/epidemiología , Depresión/etiología , Depresión/genética , Depresión/psicología , Depresión Posparto/epidemiología , Depresión Posparto/etiología , Depresión Posparto/genética , Depresión Posparto/psicología , Pueblos del Este de Asia/genética , Pueblos del Este de Asia/psicología , Genotipo , Haplotipos , Parto/genética , Parto/psicología , Polimorfismo Genético , Periodo Posparto , Estudios Prospectivos , Receptores de N-Metil-D-Aspartato/genética , Factores de Riesgo , Conducta Autodestructiva/epidemiología , Conducta Autodestructiva/etiología , Conducta Autodestructiva/genética , Conducta Autodestructiva/psicología , Estrés Psicológico/epidemiología , Estrés Psicológico/genética
15.
J Psychiatr Res ; 160: 204-209, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848775

RESUMEN

The glutamatergic system may be central to the neurobiology and treatment of major depressive disorder (MDD) and psychosis. Despite the success of N-methyl-D-aspartate receptor (NMDAR) antagonists for the treatment of MDD, little is known regarding the expression of these glutamate receptors in MDD. In this study we measured gene expression, via qRT-PCR, of the major NMDAR subunits, in the anterior cingulate cortex (ACC) in MDD subjects with and without psychosis, and non-psychiatric controls. Overall, GRIN2B mRNA was increased in both MDD with (+32%) and without psychosis (+40%) compared to controls along with a trend increase in GRIN1 mRNA in MDD overall (+24%). Furthermore, in MDD with psychosis there was a significant decrease in the GRIN2A:GRIN2B mRNA ratio (-19%). Collectively these results suggest dysfunction of the glutamatergic system at the gene expression level in the ACC in MDD. Increased GRIN2B mRNA in MDD, along with an altered GRIN2A:GRIN2B ratio in psychotic depression, suggests a disruption to NMDAR composition could be present in the ACC in MDD; this could lead to enhanced signalling via GluN2B-containing NMDARs and greater potential for glutamate excitotoxicity in the ACC in MDD. These results support future research into GluN2B antagonist-based treatments for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de N-Metil-D-Aspartato , Humanos , Depresión/psicología , Trastorno Depresivo Mayor/genética , Expresión Génica , Giro del Cíngulo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Mensajero/metabolismo
16.
Mol Genet Metab ; 138(3): 107523, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758276

RESUMEN

RATIONALE: To date, causal therapy is potentially available for GRIN2B-related neurodevelopmental disorder (NDD) due to loss-of-function (LoF) variants in GRIN2B, resulting in dysfunction of the GluN2B subunit-containing N-methyl-d-aspartate receptor (NMDAR). Recently, in vitro experiments showed that high doses of NMDAR co-agonist d-serine has the potential to boost the activity in GluN2B LoF variant-containing NMDARs. Initial reports of GRIN2B-NDD patients LoF variants, treated with l-serine using different regimens, showed varying effects on motor and cognitive performance, communication, behavior and EEG. Here, this novel treatment using a standardized protocol with an innovative developmental outcome measure is explored further in an open-label observational GRIN2B-NDD study. METHODS: Initially, in vitro studies were conducted in order to functionally stratify two de novo GRIN2B variants present in two female patients (18 months and 4 years old). Functional studies showed that both variants are LoF, and thus the patients were treated experimentally according to an approved protocol with oral l-serine (500 mg/kg/day in 4 doses) for a period of 12 months. Both patients showed a heterogeneous clinical phenotype, however overlapping symptoms were present: intellectual developmental disability (IDD), behavioral abnormalities and hypotonia. Outcome measures included laboratory tests, quality of life, sleep, irritability, stool, and performance skills, measured by, among others, the Perceive-Recall-Plan-Perform System of Task Analysis (PRPP-Assessment). RESULTS: Both patients tolerated l-serine without adverse effects. In one patient, improvement in psychomotor development and cognitive functioning was observed after 12 months (PRPP mastery score 10% at baseline, 78% at twelve months). In the most severe clinically affected patient no significant objective improvement in validated outcomes was observed. Caregivers of both patients reported subjective increase of alertness and improved communication skills. CONCLUSION: Our observational study confirms that l-serine supplementation is safe in patients with GRIN2B-NDD associated with LoF variants, and may accelerate psychomotor development and ameliorate cognitive performance in some but not all patients. The PRPP-Assessment, a promising instrument to evaluate everyday activities and enhance personalized and value-based care, was not performed in the severely affected patient, meaning that possible positive results may have been missed. To generate stronger evidence for effect of l-serine in GRIN2B-NDD, we will perform placebo-controlled n-of-1 trials.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Femenino , Humanos , Cognición , Trastornos del Neurodesarrollo/tratamiento farmacológico , Trastornos del Neurodesarrollo/genética , Calidad de Vida , Receptores de N-Metil-D-Aspartato/genética , Serina , Lactante , Preescolar
17.
Neurosci Lett ; 795: 137031, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36574811

RESUMEN

Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune epilepsy associated with memory deficits. Research has demonstrated that anti-NMDAR inhibit long-term potentiation, and, at the same time, lead to disinhibition in the form of epileptiform afterpotentials in the potentiated state. While both effects may give rise to the key symptoms of the disease, the molecular basis of being simultaneously inhibitory and disinhibitory is difficult to explain. Here, we explored a possible involvement of the GluN2B subunit. To this aim, we injected cerebrospinal fluid from anti-NMDAR encephalitis patients into the rat hippocampus and prepared brain slices for in vitro field potential recordings. Associational-commissural-fiber-CA3 synapses from anti-NMDAR-treated animals showed increased field potential amplitudes with concomitantly enhanced paired-pulse ratios as compared to control tissue. GluN2B inhibition by Ro25-6981 mimicked these effects in controls but had no effect in anti-NMDAR tissues indicating a presynaptic and occluding effect of anti-NMDAR. We then induced potentiation of associational-commissural-fiber-CA3 synapses, and confirmed that slices from anti-NMDAR-treated animals showed reduced potentiation and pronounced epileptiform afterpotentials. Intriguingly, both effects were absent when Ro25-6981 was added in vitro before inducing potentiation. These results indicate that GluN2B-containing NMDARs, partially expressed presynaptically, show differential sensitivity to anti-NMDAR, and that altered GluN2B function is particularly apparent in the potentiated state rather than under baseline conditions. Since GluN2B inhibition rescued the effects of anti-NMDAR in the potentiated state, this opens the possibility that at least a subgroup of patients could benefit from a GluN2B antagonist.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Ratas , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Potenciación a Largo Plazo/fisiología
18.
J Autism Dev Disord ; 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36399225

RESUMEN

Autism spectrum disorders (ASDs) are described as generalized developmental disorders, with an average age of onset of 36 months. Genetic and environmental factors may contribute to this multifactorial disorder. The present study aimed to investigate the association of three GRIN2B polymorphisms, including rs1019385, rs1024893, and rs3764028, with ASDs. Based on the results, there was a significant difference regarding the genotype frequency of rs3764028 polymorphism between the control and case (ASD) groups (P = 0.027). According to the recessive model, this variant was associated with ASDs (P = 0.23). None of the eight haplotype models with frequencies above 0.5 showed significant differences between the case and control groups in terms of allelic frequency. The present results showed that the rs376028 variant was directly related to the phenotypic symptoms of ASDs.

19.
Genes (Basel) ; 13(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893069

RESUMEN

The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile spasms and Lennox-Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations on healthy participants using a computational approach. We looked at all of the known mutations and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models were then examined. Four polymorphisms were identified as phylogenetically conserved PTM drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636 (p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of protein function is accounted for by the calculated stability, compactness, and total globularity score. GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible surface area was positively related to globularity. Furthermore, there was a link between GluN2B protein folding, movement, and function, indicating that both putative high and low local movements were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression, phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases. These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems.


Asunto(s)
Trastornos del Neurodesarrollo , Polimorfismo de Nucleótido Simple , Receptores de N-Metil-D-Aspartato , Humanos , Mutación , Trastornos del Neurodesarrollo/genética , Filogenia , Receptores de N-Metil-D-Aspartato/genética
20.
Br J Anaesth ; 129(4): 544-554, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35697546

RESUMEN

BACKGROUND: Environmental factors contribute to autism spectrum disorder. Fentanyl, one of the most widely used opioid analgesics in anaesthesia, can induce neurotoxicity, but its role in autism remains unknown. We determined whether fentanyl induced autism-like behaviours in young mice and the underlying mechanisms. METHODS: Young male and female mice received fentanyl at postnatal days 6, 8, and 10, and performed behavioural tests, including three-chamber social preference, elevated plus maze, grooming behaviour, and open-field test, from postnatal days 30-32. Expression of Grin2b, the gene encoding the GluN2B subunit of the N-methyl-d-aspartate receptor, was assessed in the anterior cingulate cortex of male mice using fluorescence in situ hybridisation histochemistry. We used bisulfite target sequencing to determine Grin2b hypermethylation sites after fentanyl treatment. In the specific activation and rescue experiments, we injected the mu opioid receptor agonist [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin (DAMGO) or Grin2b overexpression lentivirus into the anterior cingulate cortex of male mice. RESULTS: Fentanyl induced autism-like behaviours in both young male and female mice, and downregulated Grin2b expression (0.49-fold [0.08] vs 1.00-fold [0.09]; P<0.01) and GluN2B protein amounts (0.38-fold [0.07] vs 1.00-fold [0.12]; P<0.01) in the anterior cingulate cortex through hypermethylation of Grin2b. The mu-opioid receptor antagonist naloxone and overexpression of Grin2b in anterior cingulate cortex attenuated the fentanyl-induced effects, whereas DAMGO injection into the anterior cingulate cortex induced autism-like behaviours. CONCLUSIONS: These data suggest that fentanyl induces autism-like behaviours in young mice via an epigenetic mechanism. Further research is required to determine possible clinical relevance to autism risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Analgésicos Opioides/farmacología , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Encefalina Ala(2)-MeFe(4)-Gli(5) , Femenino , Fentanilo/farmacología , Ácido Glutámico , Masculino , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Receptores de N-Metil-D-Aspartato/genética , Receptores Opioides mu/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...