Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31149, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803914

RESUMEN

The reserve of glycogen is essential for embryonic development. In oviparous fish, egg is an isolated system after egg laying with all the required energy deposits by their mothers. However, the key regulated factor mediates the storage of maternal glycogen reserve which support for embryogenesis in the offspring is largely unknown. Glycogen synthase (GYS) is a central enzyme for glycogen synthesis. In our previous study, we generated a gys1 knockout zebrafish line, showed an embryonic developmental defect in F3 generation. In this study, firstly we determined that the gys1 was maternal origin by backcrossing the F2 mutant with wildtype lines. PAS staining and glycogen content measurement showed that glycogen reserve was reduced both in ovaries and embryos in the mutant group compared to wildtypes. Free glucose measurement analysis showed a 50 % of reduction in gys1 mutant embryos compared to wildtype embryos at 24 hpf; showed an approximal 50 % of reduction in gys1 mutant adults compared to wildtypes. Microinjection of 2-NBDG in embryos and comparison of fluorescent signal demonstrated that glucose uptake ability was decreased in the mutant embryos, indicating an impaired glucose metabolism. Untargeted metabolomics analysis then was employed and revealed that key modified metabolites enriched into vitamin B pathway, carbohydrate and unsaturated fatty acid pathways. These results demonstrated that gys1 played a role on glycogen metabolism, involved into the maternal glycogen reserve which essentially contribute to embryonic development.

2.
Poult Sci ; 103(3): 103455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295503

RESUMEN

Studies have demonstrated that chronic heat stress can accelerate glycolysis, decrease glycogen content in muscle, and affect muscle quality. However, the consequences of chronic heat stress on glycogen synthesis, miRNA expression in pectoralis major (PM) muscle, and its regulatory functions remain unknown. In this study, high-throughput sequencing and cell experiments were used to explore the effects of chronic heat stress on miRNA expression profiles and the regulatory mechanisms of miRNAs in glycogen synthesis under chronic heat stress. In total, 144 cocks were allocated into 3 groups: the normal control (NC) group, the heat stress (HS) group, and the pair-fed (PF) group. In total, 30 differently expressed (DE) miRNAs were screened after excluding the effect of feed intake, which were mainly related to metabolism, signal transduction, cell growth and death. Furthermore, the gga-miR-212-5p/GYS1 axis was predicted to participate in glycogen synthesis through the miRNA-mRNA analysis, and a dual-luciferase reporter test assay confirmed the target relationship. Mechanistically, chronic heat stress up-regulated gga-miR-212-5p, which could inhibit the expression of GYS1 in the PM muscle. Knocking down gga-miR-212-5p alleviates the reduction of glycogen content caused by chronic heat stress; overexpression of gga-miR-212-5p can reduce glycogen content. This study provided another important mechanism for the decreased glycogen contents within the PM muscle of broilers under heat stress, which might contribute to impaired meat quality.


Asunto(s)
Trastornos de Estrés por Calor , MicroARNs , Animales , Músculos Pectorales , Pollos/genética , Bioensayo/veterinaria , Glucógeno , Trastornos de Estrés por Calor/veterinaria , MicroARNs/genética
3.
J Int Med Res ; 50(3): 3000605221084873, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35296144

RESUMEN

A 26-year-old Asian woman with persistent muscle weakness was diagnosed with polymyositis based on biopsy findings at another hospital 11 years ago. However, her symptoms fluctuated repeatedly under treatment with prednisone and immunosuppressive agents, and worsened 2 months prior to the current presentation. A second muscle biopsy suggested metabolic myopathy, and genetic testing revealed a novel c.1074C > T variant in the glycogen synthase 1 gene (GYS1), which is implicated in muscle glycogen storage disease type 0. However, no abnormalities in glycogen deposition were found by biopsy; rather, muscle fibers exhibited large intracellular lipid droplets. Furthermore, muscle strength was greatly restored and circulating levels of creatine kinase indicative of muscle degeneration greatly reduced by vitamin B2 treatment. Therefore, the final diagnosis was lipid storage myopathy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Enfermedades Musculares , Polimiositis , Adulto , Femenino , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Humanos , Errores Innatos del Metabolismo Lipídico , Lípidos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Distrofias Musculares , Mutación , Polimiositis/diagnóstico , Polimiositis/genética
4.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347645

RESUMEN

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Asunto(s)
Enfermedad de Lafora , MicroARNs , Animales , Modelos Animales de Enfermedad , Glucanos , Glucógeno , Enfermedad del Almacenamiento de Glucógeno , Glucógeno Sintasa/genética , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Enfermedad de Lafora/terapia , Ratones , Enfermedades del Sistema Nervioso , Enfermedades Neuroinflamatorias
5.
Neurotherapeutics ; 18(2): 1414-1425, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830476

RESUMEN

Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.


Asunto(s)
Encéfalo/metabolismo , Glucanos/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Glucógeno Sintasa/genética , Glucógeno/metabolismo , Enfermedad de Lafora/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades Neuroinflamatorias/genética , ARN Mensajero/metabolismo , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/terapia , Ratones , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/terapia , Prueba de Estudio Conceptual
6.
Cell Metab ; 33(2): 411-423.e4, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33306983

RESUMEN

Neutrophils can function and survive in injured and infected tissues, where oxygen and metabolic substrates are limited. Using radioactive flux assays and LC-MS tracing with U-13C glucose, glutamine, and pyruvate, we observe that neutrophils require the generation of intracellular glycogen stores by gluconeogenesis and glycogenesis for effective survival and bacterial killing. These metabolic adaptations are dynamic, with net increases in glycogen stores observed following LPS challenge or altitude-induced hypoxia. Neutrophils from patients with chronic obstructive pulmonary disease have reduced glycogen cycling, resulting in impaired function. Metabolic specialization of neutrophils may therefore underpin disease pathology and allow selective therapeutic targeting.


Asunto(s)
Glucosa/inmunología , Neutrófilos/inmunología , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Gluconeogénesis , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Adulto Joven
7.
Theranostics ; 10(20): 9186-9199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802186

RESUMEN

Metabolism reprogramming is a hallmark of many cancer types. We focused on clear cell renal carcinoma (ccRCC) which is characterized by its clear and glycogen-enriched cytoplasm with unknown reasons. The aim of this study was to identify the clinical significance, biological function, and molecular regulation of glycogen synthase 1 (GYS1) in ccRCC glycogen accumulation and tumor progression. Methods: We determined the clinical relevance of GYS1 and glycogen in ccRCC by immunohistochemistry and periodic acid-schiff staining in fresh tissue and by tissue micro-array. Metabolic profiling with GYS1 depletion was performed by metabolomics analysis. In vitro and xenograft mouse models were used to evaluate the impact of GYS1 on cell proliferation. High-throughput RNA-Seq analyses and co-immunoprecipitation-linked mass spectrometry were used to investigate the downstream targets of GYS1. Flow cytometry and CCK8 assays were performed to determine the effect of GYS1 and sunitinib on cell viability. Results: We observed that GYS1 was significantly overexpressed and glycogen was accumulated in ccRCC tissues. These effects were correlated with unfavorable patient survival. Silencing of GYS1 induced metabolomic perturbation manifested by a carbohydrate metabolism shift. Overexpression of GYS1 promoted tumor growth whereas its silencing suppressed it by activating the canonical NF-κB pathway. The indirect interaction between GYS1 and NF-κB was intermediated by RPS27A, which facilitated the phosphorylation and nuclear import of p65. Moreover, silencing of GYS1 increased the synthetic lethality of ccRCC cells to sunitinib treatment by concomitantly suppressing p65. Conclusions: Our study findings reveal an oncogenic role for GYS1 in cell proliferation and glycogen metabolism in ccRCC. Re-sensitization of ccRCC cells to sunitinib suggests that GYS1 is a useful indicator of unfavorable prognosis as well as a therapeutic target for patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Glucógeno Sintasa/metabolismo , Glucógeno/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Progresión de la Enfermedad , Humanos , Inmunohistoquímica/métodos , Masculino , Metaboloma/fisiología , Ratones , Ratones Endogámicos BALB C , Pronóstico , Transducción de Señal/fisiología
8.
Toxicology ; 390: 146-158, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28916327

RESUMEN

Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase ß (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes.


Asunto(s)
Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucógeno/metabolismo , Intoxicación del Sistema Nervioso por Plomo en la Infancia/etiología , Neuronas/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Comunicación Celular/efectos de los fármacos , Conexina 43/metabolismo , Femenino , Edad Gestacional , Glucosa/metabolismo , Glucógeno Fosforilasa de Forma Encefálica/genética , Glucógeno Fosforilasa de Forma Encefálica/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Intoxicación del Sistema Nervioso por Plomo en la Infancia/genética , Intoxicación del Sistema Nervioso por Plomo en la Infancia/metabolismo , Intoxicación del Sistema Nervioso por Plomo en la Infancia/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilasa Quinasa/genética , Fosforilasa Quinasa/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar
9.
Anim Genet ; 48(1): 108-112, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27476720

RESUMEN

The aim of this study was to determine the allele frequency of the glycogen synthase 1 (GYS1) mutation associated with polysaccharide storage myopathy type 1 in the Austrian Noriker horse. Furthermore, we examined the influence of population substructures on the allele distribution. The study was based upon a comprehensive population sample (208 breeding stallions and 309 mares) and a complete cohort of unselected offspring from the year 2014 (1553 foals). The mean proportion of GYS1 carrier animals in the foal cohort was 33%, ranging from 15% to 50% according to population substructures based on coat colours. In 517 mature breeding horses the mutation carrier frequency reached 34%, ranging on a wider scale from 4% to 62% within genetic substructures. We could show that the occurrence of the mutated GYS1 allele is influenced by coat colour; genetic bottlenecks; and assortative, rotating and random mating strategies. Highest GYS1 carrier frequencies were observed in the chestnut sample comprising 50% in foals, 54% in mares and 62% in breeding stallions. The mean inbreeding of homozygous carrier animals reached 4.10%, whereas non-carrier horses were characterized by an inbreeding coefficient of 3.48%. Lowest GYS1 carrier frequencies were observed in the leopard spotted Noriker subpopulation. Here the mean carrier frequency reached 15% in foals, 17% in mares and 4% in stallions and inbreeding decreased from 3.28% in homozygous non-carrier horses to 2.70% in heterozygous horses and 0.94% in homozygous carriers. This study illustrates that lineage breeding and specified mating strategies result in genetic substructures, which affect the frequencies of the GYS1 gene mutation.


Asunto(s)
Frecuencia de los Genes , Genética de Población , Glucógeno Sintasa/genética , Color del Cabello/genética , Caballos/genética , Alelos , Animales , Austria , Cruzamiento , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Homocigoto , Enfermedades de los Caballos/genética , Endogamia , Masculino , Enfermedades Musculares/genética , Enfermedades Musculares/veterinaria , Mutación , Linaje
10.
Mol Cell Biochem ; 424(1-2): 203-208, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27785702

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) is a ubiquitous serine/threonine kinase and has important roles in glycogen metabolism biosynthesis. Studies have revealed that GSK3ß can directly regulate the glycogen synthase activity, yet little is known about the regulation of GSK3ß on GYS1 gene transcription. Here, we show that overexpression of GSK3ß decreased the mRNA expression level of GYS1. Then we cloned approximately 1.5 kb of pig GYS1 gene promoter region, generated sequential deletion constructs, and evaluated their activity. A gradual increase of the promoter activity was seen with increasing length of the promoter sequence, reaching its highest activity to the sequence corresponding to nt -350 to +224, and then decreased. However, the activities of constructed promoter fragments show different responses to GSK3ß co-transfection. By analyzing a series of GYS1 promoter reporter constructs, we have defined two crucial regions (-1488 to -539, -350 to -147) that are responsible for GSK3ß-induced transcriptional repression. Furthermore, the ChIP results revealed that only the first and second NF-κB sites of GYS1 promoter could bind to p65, and overexpression of GSK3ß induced a significant decrease in p65 binding to the second NF-κB binding site, suggesting that GSK3ß may regulate expression of GYS1 gene through binding to the second rather than the first NF-κB site. These data suggest that the NF-κB plays important roles in the transcriptional activity of pig GYS1 gene regulated by GSK3ß.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa/biosíntesis , Elementos de Respuesta/fisiología , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Glucógeno Sintasa/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Porcinos , Factor de Transcripción ReIA/genética
11.
Rev Neurol (Paris) ; 172(10): 541-545, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27663060

RESUMEN

The field of glycogenosis has been greatly expanded over the past few years with the discovery of new metabolic diseases that have allowed new metabolic pathways to be deciphered. Described here are the clinical and pathological features of four recently described muscle glycogenoses caused by GYS1, GYG1, RBCK1 and PGM1 gene mutations. The initial steps of glycogen synthesis are involved in deficiencies of glycogenin-1 (GYG1) and muscle glycogen synthase (GYS1). Phosphoglucomutase deficiency disrupts two metabolic pathways: the connection between galactose and glycogen on the one hand, and glucose metabolism on the other. However, the metabolic consequences of mutations in the ubiquitin ligase gene RBCK1 are still poorly understood.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Humanos , Músculo Esquelético/patología
12.
Mol Metab ; 5(3): 221-232, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977394

RESUMEN

OBJECTIVE: Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. METHODS: Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. RESULTS: gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. CONCLUSIONS: Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. IN BRIEF: This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA