Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38401528

RESUMEN

Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20-25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.


Asunto(s)
Genoma , Fitomejoramiento , Humanos , Genómica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
2.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243613

RESUMEN

Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tetraploidía , Fenotipo , Genotipo , Genómica
3.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625792

RESUMEN

A crucial step in inbred plant breeding is the choice of mating design to derive high-performing inbred varieties while also maintaining a competitive breeding population to secure sufficient genetic gain in future generations. In practice, the mating design usually relies on crosses involving the best parental inbred lines to ensure high mean progeny performance. This excludes crosses involving lower performing but more complementary parents in terms of favorable alleles. We predicted the ability of crosses to produce putative outstanding progenies (high mean and high variance progeny distribution) using genomic prediction models. This study compared the benefits and drawbacks of 7 genomic cross selection criteria (CSC) in terms of genetic gain for 1 trait and genetic diversity in the next generation. Six CSC were already published, and we propose an improved CSC that can estimate the proportion of progeny above a threshold defined for the whole mating plan. We simulated mating designs optimized using different CSC. The 835 elite parents came from a real breeding program and were evaluated between 2000 and 2016. We applied constraints on parental contributions and genetic similarities between selected parents according to usual breeder practices. Our results showed that CSC based on progeny variance estimation increased the genetic value of superior progenies by up to 5% in the next generation compared to CSC based on the progeny mean estimation (i.e. parental genetic values) alone. It also increased the genetic gain (up to 4%) and/or maintained more genetic diversity at QTLs (up to 4% more genic variance when the marker effects were perfectly estimated).


Asunto(s)
Genómica , Fitomejoramiento , Selección de Paciente , Fenotipo , Genómica/métodos , Sitios de Carácter Cuantitativo , Selección Genética , Modelos Genéticos
4.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37506255

RESUMEN

Genetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits. Here, we investigate the allele frequency changes of old and new causal loci under 50 generations of phenotypic, pedigree, and genomic selection, for a trait controlled by either additive, additive and dominance, or additive, dominance, and epistatic effects. Genomic selection resulted in slightly larger and faster changes in allele frequencies of causal loci than pedigree selection. For each locus, allele frequency change per generation was not only influenced by its statistical additive effect but also to a large extent by the linkage phase with other loci and its allele frequency. Selection fixed a large number of loci, and 5 times more unfavorable alleles became fixed with genomic and pedigree selection than with phenotypic selection. For pedigree selection, this was mainly a result of increased genetic drift, while genetic hitchhiking had a larger effect on genomic selection. When epistasis was present, the average allele frequency change was smaller (∼15% lower), and a lower number of loci became fixed for all selection methods. We conclude that for long-term genetic improvement using genomic selection, it is important to consider hitchhiking and to limit the loss of favorable alleles.


Asunto(s)
Genoma , Selección Genética , Animales , Frecuencia de los Genes , Genómica , Mutación , Modelos Genéticos
5.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37368984

RESUMEN

Tropical maize can be used to diversify the genetic base of temperate germplasm and help create climate-adapted cultivars. However, tropical maize is unadapted to temperate environments, in which sensitivities to long photoperiods and cooler temperatures result in severely delayed flowering times, developmental defects, and little to no yield. Overcoming this maladaptive syndrome can require a decade of phenotypic selection in a targeted, temperate environment. To accelerate the incorporation of tropical diversity in temperate breeding pools, we tested if an additional generation of genomic selection can be used in an off-season nursery where phenotypic selection is not very effective. Prediction models were trained using flowering time recorded on random individuals in separate lineages of a heterogenous population grown at two northern U.S. latitudes. Direct phenotypic selection and genomic prediction model training was performed within each target environment and lineage, followed by genomic prediction of random intermated progenies in the off-season nursery. Performance of genomic prediction models was evaluated on self-fertilized progenies of prediction candidates grown in both target locations in the following summer season. Prediction abilities ranged from 0.30 to 0.40 among populations and evaluation environments. Prediction models with varying marker effect distributions or spatial field effects had similar accuracies. Our results suggest that genomic selection in a single off-season generation could increase genetic gains for flowering time by more than 50% compared to direct selection in summer seasons only, reducing the time required to change the population mean to an acceptably adapted flowering time by about one-third to one-half.


Asunto(s)
Fitomejoramiento , Zea mays , Humanos , Zea mays/genética , Ambiente , Adaptación Fisiológica/genética , Genómica , Selección Genética
6.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37216670

RESUMEN

This study investigates nonlinear kernels for multitrait (MT) genomic prediction using support vector regression (SVR) models. We assessed the predictive ability delivered by single-trait (ST) and MT models for 2 carcass traits (CT1 and CT2) measured in purebred broiler chickens. The MT models also included information on indicator traits measured in vivo [Growth and feed efficiency trait (FE)]. We proposed an approach termed (quasi) multitask SVR (QMTSVR), with hyperparameter optimization performed via genetic algorithm. ST and MT Bayesian shrinkage and variable selection models [genomic best linear unbiased predictor (GBLUP), BayesC (BC), and reproducing kernel Hilbert space (RKHS) regression] were employed as benchmarks. MT models were trained using 2 validation designs (CV1 and CV2), which differ if the information on secondary traits is available in the testing set. Models' predictive ability was assessed with prediction accuracy (ACC; i.e. the correlation between predicted and observed values, divided by the square root of phenotype accuracy), standardized root-mean-squared error (RMSE*), and inflation factor (b). To account for potential bias in CV2-style predictions, we also computed a parametric estimate of accuracy (ACCpar). Predictive ability metrics varied according to trait, model, and validation design (CV1 or CV2), ranging from 0.71 to 0.84 for ACC, 0.78 to 0.92 for RMSE*, and between 0.82 and 1.34 for b. The highest ACC and smallest RMSE* were achieved with QMTSVR-CV2 in both traits. We observed that for CT1, model/validation design selection was sensitive to the choice of accuracy metric (ACC or ACCpar). Nonetheless, the higher predictive accuracy of QMTSVR over MTGBLUP and MTBC was replicated across accuracy metrics, besides the similar performance between the proposed method and the MTRKHS model. Results showed that the proposed approach is competitive with conventional MT Bayesian regression models using either Gaussian or spike-slab multivariate priors.


Asunto(s)
Pollos , Herencia Multifactorial , Animales , Pollos/genética , Teorema de Bayes , Heurística , Fenotipo , Modelos Genéticos , Genotipo
7.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947440

RESUMEN

Coffee is one of the most important beverages and trade products in the world. Among the multiple research initiatives focused on coffee sustainability, plant breeding provides the best means to increase phenotypic performance and release cultivars that could meet market demands. Since coffee is well adapted to a diversity of tropical environments, an important question for those confronting the problem of evaluating phenotypic performance is the relevance of genotype-by-environment interaction. As a perennial crop with a long juvenile phase, coffee is subjected to significant temporal and spatial variations. Such facts not only hinder the selection of promising materials but also cause a majority of complaints among growers. In this study, we hypothesized that trait stability in coffee is genetically controlled and therefore is predictable using molecular information. To test it, we used genome-based methods to predict stability metrics computed with the primary goal of selecting coffee genotypes that combine high phenotypic performance and stability for target environments. Using 2 populations of Coffea canephora, evaluated across multiple years and locations, our contribution is 3-fold: (1) first, we demonstrated that the number of harvest evaluations may be reduced leading to accelerated implementation of molecular breeding; (2) we showed that stability metrics are predictable; and finally, (3) both stable and high-performance genotypes can be simultaneously predicted and selected. While this research was carried out on representative environments for coffee production with substantial crossover in genotypic ranking, we anticipate that genomic prediction can be an efficient tool to select coffee genotypes that combine high performance and stability across years and the target locations here evaluated.


Asunto(s)
Coffea , Coffea/genética , Café , Fitomejoramiento , Genotipo , Genómica/métodos
8.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36702618

RESUMEN

Genomic selection (GS) in wheat breeding programs is of great interest for predicting the genotypic values of individuals, where both additive and nonadditive effects determine the final breeding value of lines. While several simulation studies have shown the efficiency of rapid-cycling GS strategies for parental selection or population improvement, their practical implementations are still lacking in wheat and other crops. In this study, we demonstrate the potential of rapid-cycle recurrent GS (RCRGS) to increase genetic gain for grain yield (GY) in wheat. Our results showed a consistent realized genetic gain for GY after 3 cycles of recombination (C1, C2, and C3) of bi-parental F1s, when summarized across 2 years of phenotyping. For both evaluation years combined, genetic gain through RCRGS reached 12.3% from cycle C0 to C3 and realized gain was 0.28 ton ha-1 per cycle with a GY from C0 (6.88 ton ha-1) to C3 (7.73 ton ha-1). RCRGS was also associated with some changes in important agronomic traits that were measured (days to heading, days to maturity, and plant height) but not selected for. To account for these changes, we recommend implementing GS together with multi-trait prediction models.


Asunto(s)
Selección Genética , Triticum , Humanos , Triticum/genética , Fitomejoramiento , Pan , Fenotipo , Genotipo , Genómica , Genoma de Planta , Grano Comestible/genética , Modelos Genéticos
9.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36652410

RESUMEN

The genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage mapping on a kindred of 364 deer detected a pronounced QTL on chromosome 21 explaining 29% of the variance in birth weight, suggesting that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association (GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome. This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that the proportion of variance explained by each chromosome was slightly positively correlated with its size. These three findings highlight a highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the differences in how associations are modelled between QTL mapping and GWA. Our study suggests that models of polygenic adaptation are the most appropriate to study the evolutionary trajectory of this trait.


Asunto(s)
Ciervos , Sitios de Carácter Cuantitativo , Animales , Estudio de Asociación del Genoma Completo/métodos , Peso al Nacer/genética , Ciervos/genética , Mapeo Cromosómico , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Genetics ; 222(4)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36250789

RESUMEN

Genomic risk prediction is on the emerging path toward personalized medicine. However, the accuracy of polygenic prediction varies strongly in different individuals. Based on up to 352,277 European ancestry participants in the UK Biobank, we constructed polygenic risk scores for 15 physiological and biochemical quantitative traits. We identified a total of 185 polygenic prediction variability quantitative trait loci for 11 traits by Levene's test among 254,376 unrelated individuals. We validated the effects of prediction variability quantitative trait loci using an independent test set of 58,927 individuals. For instance, a score aggregating 51 prediction variability quantitative trait locus variants for triglycerides had the strongest Spearman correlation of 0.185 (P-value <1.0 × 10-300) with the squared prediction errors. We found a strong enrichment of complex genetic effects conferred by prediction variability quantitative trait loci compared to risk loci identified in genome-wide association studies, including 89 prediction variability quantitative trait loci exhibiting dominance effects. Incorporation of dominance effects into polygenic risk scores significantly improved polygenic prediction for triglycerides, low-density lipoprotein cholesterol, vitamin D, and platelet. In conclusion, we have discovered and profiled genetic determinants of polygenic prediction variability for 11 quantitative biomarkers. These findings may assist interpretation of genomic risk prediction in various contexts and encourage novel approaches for constructing polygenic risk scores with complex genetic effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Herencia Multifactorial , Sitios de Carácter Cuantitativo , Triglicéridos , Predisposición Genética a la Enfermedad
11.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36218439

RESUMEN

The integration of genomic data into genetic evaluations can facilitate the rapid selection of superior genotypes and accelerate the breeding cycle in trees. In this study, 390 trees from 74 control-pollinated families were genotyped using a 36K Axiom SNP array. A total of 15,624 high-quality SNPs were used to develop genomic prediction models for mammalian bark stripping, tree height, and selected primary and secondary chemical compounds in the bark. Genetic parameters from different genomic prediction methods-single-trait best linear unbiased prediction based on a marker-based relationship matrix (genomic best linear unbiased prediction), multitrait single-step genomic best linear unbiased prediction, which integrated the marker-based and pedigree-based relationship matrices (single-step genomic best linear unbiased prediction) and the single-trait generalized ridge regression-were compared to equivalent single- or multitrait pedigree-based approaches (ABLUP). The influence of the statistical distribution of data on the genetic parameters was assessed. Results indicated that the heritability estimates were increased nearly 2-fold with genomic models compared to the equivalent pedigree-based models. Predictive accuracy of the single-step genomic best linear unbiased prediction was higher than the ABLUP for most traits. Allowing for heterogeneity in marker effects through the use of generalized ridge regression did not markedly improve predictive ability over genomic best linear unbiased prediction, arguing that most of the chemical traits are modulated by many genes with small effects. Overall, the traits with low pedigree-based heritability benefited more from genomic models compared to the traits with high pedigree-based heritability. There was no evidence that data skewness or the presence of outliers affected the genomic or pedigree-based genetic estimates.


Asunto(s)
Herbivoria , Pinus , Fitomejoramiento , Animales , Genómica/métodos , Genotipo , Modelos Genéticos , Fenotipo , Pinus/genética , Corteza de la Planta , Polimorfismo de Nucleótido Simple , Genoma de Planta
12.
Genetics ; 222(1)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35924977

RESUMEN

The BGLR-R package implements various types of single-trait shrinkage/variable selection Bayesian regressions. The package was first released in 2014, since then it has become a software very often used in genomic studies. We recently develop functionality for multitrait models. The implementation allows users to include an arbitrary number of random-effects terms. For each set of predictors, users can choose diffuse, Gaussian, and Gaussian-spike-slab multivariate priors. Unlike other software packages for multitrait genomic regressions, BGLR offers many specifications for (co)variance parameters (unstructured, diagonal, factor analytic, and recursive). Samples from the posterior distribution of the models implemented in the multitrait function are generated using a Gibbs sampler, which is implemented by combining code written in the R and C programming languages. In this article, we provide an overview of the models and methods implemented BGLR's multitrait function, present examples that illustrate the use of the package, and benchmark the performance of the software.


Asunto(s)
Algoritmos , Genoma , Teorema de Bayes , Genómica/métodos , Genotipo , Modelos Genéticos
13.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35792875

RESUMEN

Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.


Asunto(s)
Café , Fenómica , Clorofila A , Café/genética , Genoma de Planta , Genómica/métodos , Genotipo , Hibridación Genética , Modelos Genéticos , Fenotipo , Fitomejoramiento
14.
Genetics ; 221(1)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35212766

RESUMEN

With the growing amount and diversity of intermediate omics data complementary to genomics (e.g. DNA methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics data into conventional genomic evaluation. The omics data help decode the multiple layers of regulation from genotypes to phenotypes, thus forms a connected multilayer network naturally. We developed a new method named NN-MM to model the multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear mixed models ("MM") to multilayer artificial neural networks ("NN"). NN-MM incorporates intermediate omics features by adding middle layers between genotypes and phenotypes. Linear mixed models (e.g. pedigree-based BLUP, GBLUP, Bayesian Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships between intermediate omics features and phenotypes. NN-MM had significantly better prediction performance than the recently proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach, NN-MM can handle various patterns of missing omics measures and allows nonlinear relationships between intermediate omics features and phenotypes. NN-MM has been implemented in an open-source package called "JWAS".


Asunto(s)
Modelos Genéticos , Polimorfismo de Nucleótido Simple , Teorema de Bayes , Genómica/métodos , Genotipo , Redes Neurales de la Computación
15.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150258

RESUMEN

Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations. Using two maize (Zea mays L.) populations of hybrids admixed between dent and flint heterotic groups, we compared a suite of five genomic prediction models incorporating (or not) parameters accounting for inbreeding and nonadditive effects with the natural and orthogonal interaction approach in single and multienvironment contexts. In both populations, variance decompositions showed the strong impact of inbreeding on plant yield, height, and flowering time which was supported by the superiority of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In most cases dominance variance was reduced when inbreeding was accounted for. The model including additivity, dominance, epistasis, and inbreeding effects appeared to be the most robust for prediction across traits and populations (+0.054 in predictive ability for mean yield). In a multienvironment context, we found that the inclusion of nonadditive and inbreeding effects was advantageous when predicting hybrids not yet observed in any environment. Overall, comparing variance decompositions was helpful to guide model selection for genomic prediction. Finally, we recommend the use of models including inbreeding and nonadditive parameters following the natural and orthogonal interaction approach to increase prediction accuracy in admixed populations.


Asunto(s)
Endogamia , Zea mays , Genotipo , Hibridación Genética , Modelos Genéticos , Fenotipo , Fitomejoramiento , Zea mays/genética
16.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35134191

RESUMEN

Terpenes are an important group of plant specialized metabolites influencing, amongst other functions, defence mechanisms against pests. We used a genome-wide association study to identify single nucleotide polymorphism (SNP) markers and putative candidate genes for terpene traits. We tested 15,387 informative SNP markers derived from genotyping 416 Eucalyptus grandis individuals for association with 3 terpene traits, 1,8-cineole, γ-terpinene, and p-cymene. A multilocus mixed model analysis identified 21 SNP markers for 1,8-cineole on chromosomes 2, 4, 6, 7, 8, 9, 10, and 11, that individually explained 3.0%-8.4% and jointly 42.7% of the phenotypic variation. Association analysis of γ-terpinene found 32 significant SNP markers on chromosomes 1, 2, 4, 5, 6, 9, and 11, explaining 3.4-15.5% and jointly 54.5% of phenotypic variation. For p-cymene, 28 significant SNP markers were identified on chromosomes 1, 2, 3, 5, 6, 7, 10, and 11, explaining 3.4-16.1% of the phenotypic variation and jointly 46.9%. Our results show that variation underlying the 3 terpene traits is influenced by a few minor loci in combination with a few major effect loci, suggesting an oligogenic nature of the traits.


Asunto(s)
Eucalyptus , Himenópteros , Terpenos , Animales , Eucalyptus/química , Eucalyptus/genética , Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple , Terpenos/química
17.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166767

RESUMEN

We compared the performance of linear (GBLUP, BayesB, and elastic net) methods to a nonparametric tree-based ensemble (gradient boosting machine) method for genomic prediction of complex traits in mice. The dataset used contained genotypes for 50,112 SNP markers and phenotypes for 835 animals from 6 generations. Traits analyzed were bone mineral density, body weight at 10, 15, and 20 weeks, fat percentage, circulating cholesterol, glucose, insulin, triglycerides, and urine creatinine. The youngest generation was used as a validation subset, and predictions were based on all older generations. Model performance was evaluated by comparing predictions for animals in the validation subset against their adjusted phenotypes. Linear models outperformed gradient boosting machine for 7 out of 10 traits. For bone mineral density, cholesterol, and glucose, the gradient boosting machine model showed better prediction accuracy and lower relative root mean squared error than the linear models. Interestingly, for these 3 traits, there is evidence of a relevant portion of phenotypic variance being explained by epistatic effects. Using a subset of top markers selected from a gradient boosting machine model helped for some of the traits to improve the accuracy of prediction when these were fitted into linear and gradient boosting machine models. Our results indicate that gradient boosting machine is more strongly affected by data size and decreased connectedness between reference and validation sets than the linear models. Although the linear models outperformed gradient boosting machine for the polygenic traits, our results suggest that gradient boosting machine is a competitive method to predict complex traits with assumed epistatic effects.


Asunto(s)
Genómica , Herencia Multifactorial , Animales , Genómica/métodos , Genotipo , Modelos Lineales , Ratones , Fenotipo
18.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100370

RESUMEN

Growth is one of the most important traits of an organism. For exploited species, this trait has ecological and evolutionary consequences as well as economical and conservation significance. Rapid changes in growth rate associated with anthropogenic stressors have been reported for several marine fishes, but little is known about the genetic basis of growth traits in teleosts. We used reduced genome representation data and genome-wide association approaches to identify growth-related genetic variation in the commercially, recreationally, and culturally important Australian snapper (Chrysophrys auratus, Sparidae). Based on 17,490 high-quality single-nucleotide polymorphisms and 363 individuals representing extreme growth phenotypes from 15,000 fish of the same age and reared under identical conditions in a sea pen, we identified 100 unique candidates that were annotated to 51 proteins. We documented a complex polygenic nature of growth in the species that included several loci with small effects and a few loci with larger effects. Overall heritability was high (75.7%), reflected in the high accuracy of the genomic prediction for the phenotype (small vs large). Although the single-nucleotide polymorphisms were distributed across the genome, most candidates (60%) clustered on chromosome 16, which also explains the largest proportion of heritability (16.4%). This study demonstrates that reduced genome representation single-nucleotide polymorphisms and the right bioinformatic tools provide a cost-efficient approach to identify growth-related loci and to describe genomic architectures of complex quantitative traits. Our results help to inform captive aquaculture breeding programs and are of relevance to monitor growth-related evolutionary shifts in wild populations in response to anthropogenic pressures.


Asunto(s)
Estudio de Asociación del Genoma Completo , Perciformes , Animales , Australia , Genoma , Perciformes/genética , Perciformes/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple
19.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100394

RESUMEN

Growth directly influences production rate and therefore is one of the most important and well-studied traits in animal breeding. However, understanding the genetic basis of growth has been hindered by its typically complex polygenic architecture. Here, we performed quantitative trait locus mapping and genome-wide association studies for 10 growth traits that were observed over 2 years in 1,100 F1 captive-bred trevally (Pseudocaranx georgianus). We constructed the first high-density linkage map for trevally, which included 19,861 single nucleotide polymorphism markers, and discovered 8 quantitative trait loci for height, length, and weight on linkage groups 3, 14, and 18. Using genome-wide association studies, we further identified 113 single nucleotide polymorphism-trait associations, uncovering 10 genetic hot spots involved in growth. Two of the markers found in the genome-wide association studies colocated with the quantitative trait loci previously mentioned, demonstrating that combining quantitative trait locus mapping and genome-wide association studies represents a powerful approach for the identification and validation of loci controlling complex traits. This is the first study of its kind for trevally. Our findings provide important insights into the genetic architecture of growth in this species and supply a basis for fine mapping quantitative trait loci, genomic selection, and further detailed functional analysis of the genes underlying growth in trevally.


Asunto(s)
Peces , Estudio de Asociación del Genoma Completo , Animales , Mapeo Cromosómico , Peces/genética , Ligamiento Genético , Nueva Zelanda , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
20.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35088860

RESUMEN

Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.


Asunto(s)
Kelp , Phaeophyceae , Células Germinativas de las Plantas , Humanos , Kelp/genética , Fitomejoramiento , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA