Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Clin Kidney J ; 17(7): sfae166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021813

RESUMEN

Background: Genomic disorders caused by copy number variations (CNVs) are prevalent in patients with kidney disease; however, their contribution to chronic kidney failure (KF) of undetermined aetiology (uKF) is unclear. We screened patients with uKF aged 50 years or younger to establish the prevalence of causative CNVs. Methods: We enrolled patients with an onset of KF ≤50 years from suspected undetermined aetiology for initial review of medical records to exclude patients with clear-cut clinical or histopathological kidney diagnoses or patients with already established genetic kidney diseases. Next, we performed single nucleotide polymorphism (SNP) array-based CNV screening. All the detected CNVs were systematically classified and evaluated as possible causes of the patient's kidney disease. Patients with CNVs not explaining the kidney phenotype were additionally screened for causal variants in 540 genes using whole-genome sequencing. Results: We enrolled 172 patients, of whom 123 underwent SNP-array. Pathogenic CNVs corresponding to known genomic disorders were identified in 12 patients (9.8%). The identified genomic disorders provided a causative kidney diagnosis in three patients, all of whom had reached KF by age 18 years. The remaining nine patients had CNVs with unclear kidney disease causality. Subsequently, whole-genome sequencing provided a causative genetic diagnosis in an additional four patients, including two diagnostic sequence variants unrelated to the detected CNVs. Conclusions: Genomic disorders were prevalent in this cohort with uKF, and causative CNVs were identified in 5 of 123 patients. Further studies combining the analysis of CNVs and sequence variants are needed to clarify the causal role of genomic disorders in kidney disease.

2.
Med ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39047733

RESUMEN

BACKGROUND: Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging. METHODS: This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage. FINDINGS: We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements. CONCLUSIONS: Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders. FUNDING: M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.

3.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-390062

RESUMEN

Chromosome 22qll deletion syndrome(22q11DS) is a common chromosomal microdeletion syndrome. Its clinical manifestation is complex, comprising congenital heart disease, dysmorphic facial, immunodeficiency, endocrine dysfunction and so on. The syndrome has a population prevalence of approximately 1/2500-1/4000. There have been many recent advances in understanding of the clinical manifestation, behavior and psychiatric problems and the mechanisms leading to the specific phenotypic features in chromosome 22q11 deletion syndrome. Asymmetric recombination of homologous low copy repetitives in the deletion region causes the deletion of 22q11. TBX1 is the dominant gene contributing to the phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA