Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.685
Filtrar
1.
Biomaterials ; 312: 122746, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106816

RESUMEN

Postoperative radiotherapy remains the gold standard for malignant glioma treatment. Clinical limitations, including tumor growth between surgery and radiotherapy and the emergence of radioresistance, reduce treatment effectiveness and result in local disease progression. This study aimed to develop a local drug delivery system to inhibit tumor growth before radiotherapy and enhance the subsequent anticancer effects of limited-dose radiotherapy. We developed a compound of carboplatin-loaded hydrogel (CPH) incorporated with carboplatin-loaded calcium carbonate (CPCC) to enable two-stage (peritumoral and intracellular) release of carboplatin to initially inhibit tumor growth and to synergize with limited-dose radiation (10 Gy in a single fraction) to eliminate malignant glioma (ALTS1C1 cells) in a C57BL/6 mouse subcutaneous tumor model. The doses of carboplatin in CPH and CPCC treatments were 150 µL (carboplatin concentration of 5 mg/mL) and 15 mg (carboplatin concentration of 4.1 µg/mg), respectively. Mice receiving the combination of CPH-CPCC treatment and limited-dose radiation exhibited significantly reduced tumor growth volume compared to those receiving double-dose radiation alone. Furthermore, combining CPH-CPCC treatment with limited-dose radiation resulted in significantly longer progression-free survival than combining CPH treatment with limited-dose radiation. Local CPH-CPCC delivery synergized effectively with limited-dose radiation to eliminate mouse glioma, offering a promising solution for overcoming clinical limitations.


Asunto(s)
Carbonato de Calcio , Carboplatino , Glioma , Hidrogeles , Ratones Endogámicos C57BL , Animales , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/radioterapia , Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , Carboplatino/farmacología , Hidrogeles/química , Línea Celular Tumoral , Carbonato de Calcio/química , Ratones , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia
2.
Cell Rep ; 43(10): 114775, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305483

RESUMEN

Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges to identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens and by performing genetic and pharmacological experiments. Our analysis uncovers synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.

3.
Heliyon ; 10(17): e37284, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296230

RESUMEN

The intricate interplay between the human oral microbiome and systemic health is increasingly being recognized, particularly in the context of central nervous system pathologies such as glioblastoma. In this study, we aimed to elucidate gender-specific differences in the salivary microbiome of glioma patients by utilizing 16S rRNA sequencing data from publicly available salivary microbiome datasets. We conducted comprehensive bioinformatics analysis, encompassing quality control, noise reduction, species classification, and microbial community composition analysis at various taxonomic levels. Machine learning algorithms were employed to identify microbial signatures associated with glioma. When compared to healthy controls, our analysis revealed distinct differences in the salivary microbiota of glioma patients. Notably, the genera Leptotrichia and Atopobium exhibited significant variations in abundance between genders. Leptotrichia was prevalent in healthy females but exhibited a reduced abundance in female glioma patients. In contrast, Atopobium was more abundant in male glioma patients. These findings suggest that hormonal influences might play a role in shaping the salivary microbiome and its association with glioma. We utilized a combination of LASSO-logistic regression and random forest models for feature selection, and identified key microbial features that differentiated glioma patients from healthy controls. We developed a diagnostic model with high predictive accuracy and area under the curve and principal component analysis metrics confirmed its robustness. The analysis of microbial markers, including Atopobium and Leptotrichia, highlighted the potential of the salivary microbiota as a non-invasive biomarker for the diagnosis and prognosis of glioma. Our findings highlight significant gender-specific disparities in the salivary microbiome of patients with glioma, offering new insights into the pathogenesis of glioma and paving the way for innovative diagnostic and therapeutic strategies. The use of saliva as a diagnostic fluid, given its ease of collection and non-invasive nature, holds immense promise for monitoring systemic health and the trajectory of disease. Future research should focus on investigating the underlying mechanisms by which the salivary microbiome influences the development of glioma and identifying potential microbiome-targeted therapies to enhance the management of glioma.

4.
Turk J Biol ; 48(4): 242-256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296333

RESUMEN

The glioma genome encompasses a complex array of dysregulatory events, presenting a formidable challenge in managing this devastating disease. Despite the widespread distribution of repeat and transposable elements across the human genome, their involvement in glioma's molecular pathology and patient survival remains largely unexplored. In this study, we aimed to characterize the links between the expressions of repeat/transposable elements with disease progression and survival in glioma patients. Hence, we analyzed the expression levels of satellite repeats and transposons along with genes in low-grade glioma (LGG) and high-grade glioma (HGG). Endogenous transposable elements LTR5 and HERV_a-int exhibited higher expression in HGG patients, along with immune response-related genes. Altogether, 16 transposable elements were associated with slower progression of disease in LGG patients. Conversely, 22 transposons and the HSAT5 satellite repeat were linked to a shorter event-free survival in HGG patients. Intriguingly, our weighted gene coexpression network analysis (WGCNA) disclosed that the HSAT5 satellite repeat resided in the same module network with genes implicated in chromosome segregation and nuclear division; potentially hinting at its contribution to disease pathogenesis. Collectively, we report for the first time that repeat and/or transposon expression could be related to disease progression and survival in glioma. The expressions of these elements seem to exert a protective effect during LGG-to-HGG progression, whereas they could have a detrimental impact once HGG is established. The results presented herein could serve as a foundation for further experimental work aimed at elucidating the molecular regulation of glioma genome.

5.
Bioimpacts ; 14(5): 27681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296804

RESUMEN

Introduction: Glioblastoma (GBM), which is a heterogeneous and aggressive type of brain tumor, is known for its poor survival outcomes. The treatment of GBM remains challenging primarily due to the drug resistance to the current standard therapeutic option, temozolomide (TMZ). Researchers are currently focusing on developing an appropriate alternative combinatorial therapeutic to enhance treatment outcomes. D-limonene (DL) is a monoterpene derived from citrus fruit. This study aims to assess the impact of combining DL with TMZ and explore its potential mechanism of action in U87MG and LN229 GBM cells. Methods: The effects of the combined treatment of DL and TMZ were assessed on various cellular aspects, including cell viability, anchorage-independent cell growth, and DNA damage. Furthermore, the influence of this combination on cell cycle progression, cell migration, and cell death was also investigated. Results: The combination of DL+TMZ demonstrated a synergistic effect, resulting in reduced cell proliferation and suppressing the colony formation ability of a single cell. Treatment with DL and TMZ arrested the cells in G0/G1 phase. Furthermore, the DL+TMZ combination induced apoptosis by upregulating the expression of Bax, and Caspase (CASP)-3, while reducing the expression of the Bcl-2 gene in GBM cells. In addition, the combined treatment of DL+TMZ significantly decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9, expression, indicating inhibition of cell migration in GBM cells. Conclusion: In conclusion, the combination of DL and TMZ demonstrated a synergistic effect in reducing cell proliferation, suppressing colony formation, inducing apoptosis, and inhibiting cell migration in GBM cells. These findings suggest the potential of DL+TMZ combination therapy as an effective treatment for GBM.

6.
Front Oncol ; 14: 1435204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296980

RESUMEN

Objectives: Multishell diffusion scanning is limited by low spatial resolution. We sought to improve the resolution of multishell diffusion images through deep learning-based super-resolution reconstruction (SR) and subsequently develop and validate a prediction model for adult-type diffuse glioma, isocitrate dehydrogenase status and grade 2/3 tumors. Materials and methods: A simple diffusion model (DTI) and three advanced diffusion models (DKI, MAP, and NODDI) were constructed based on multishell diffusion scanning. Migration was performed with a generative adversarial network based on deep residual channel attention networks, after which images with 2x and 4x resolution improvements were generated. Radiomic features were used as inputs, and diagnostic models were subsequently constructed via multiple pipelines. Results: This prospective study included 90 instances (median age, 54.5 years; 39 men) diagnosed with adult-type diffuse glioma. Images with both 2x- and 4x-improved resolution were visually superior to the original images, and the 2x-improved images allowed better predictions than did the 4x-improved images (P<.001). A comparison of the areas under the curve among the multiple pipeline-constructed models revealed that the advanced diffusion models did not have greater diagnostic performance than the simple diffusion model (P>.05). The NODDI model constructed with 2x-improved images had the best performance in predicting isocitrate dehydrogenase status (AUC_validation=0.877; Brier score=0.132). The MAP model constructed with the original images performed best in classifying grade 2 and grade 3 tumors (AUC_validation=0.806; Brier score=0.168). Conclusion: SR improves the resolution of multishell diffusion images and has different advantages in achieving different goals and creating different target diffusion models.

7.
Neuropsychologia ; : 109004, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299453

RESUMEN

After resective glioma surgery in the Supplementary Motor Area (SMA), patients often experience a transient disturbance of the ability to initiate speech and voluntary motor actions, known as the SMA syndrome (SMAS). It has been proposed that enhanced interhemispheric functional connectivity (FC) within the sensorimotor system may serve as a potential mechanism for recovery, enabling the non-resected SMA to assume the function of the resected region. The purpose of the present study was to investigate the extent to which changes in FC can be observed in patients after resolution of the SMAS. Eight patients underwent resection of left SMA due to suspected gliomas, resulting in various levels of the SMA syndrome. Resting-state functional MR images were acquired prior to the surgery and after resolution of the syndrome. At the group level we found an increased connectivity between the unaffected (right) SMA and the primary motor cortex on the same side following surgery. However, no significant increase in interhemispheric connectivity was observed. These findings challenge the prevailing notion that increased interhemispheric FC serves as the only mechanism underlying recovery from SMA syndrome and suggest the presence of one or more alternative mechanisms.

8.
Heliyon ; 10(18): e37712, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315202

RESUMEN

Diffuse gliomas in adults are highly infiltrative and largely incurable. Whole exome sequencing (WES) has been demonstrated very useful in genetic analysis. Here WES was performed to characterize genomic landscape of adult-type diffuse gliomas to discover the diagnostic, therapeutic and prognostic biomarkers. Somatic and germline variants of 66 patients with adult-type diffuse gliomas were detected by WES based on the next-generation sequencing. TCGA and CGGA datasets were included to analyze the integrated diagnosis and prognosis. Among 66 patients, the diagnosis of 9 cases was changed, in which 8 cases of astrocytoma were corrected into IDH-wildtype glioblastoma (GBM), and 1 oligodendroglioma without 1p/19q co-deletion into astrocytoma. The distribution of mutations including ATRX/TP53 differed in three cohorts. The genetic mutations in GBM mainly concentrated on the cell cycle, PI3K and RTK pathways. The mutational landscape of astrocytoma was more similar to that of GBM, with the highest frequency in germline variants. Patients with IDH-mutant astrocytoma harboring SNVs of PIK3CA and PIK3R1 showed a significantly worse overall survival (OS) than wild-type patients. AEBP1 amplification was associated with shorter OS in GBM. Our study suggests that clinical sequencing can recapitulate previous findings, which may provide a powerful approach to discover diagnostic, therapeutic and prognostic markers for precision medicine in adult-type diffuse gliomas.

9.
Int J Hyperthermia ; 41(1): 2406889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39317933

RESUMEN

OBJECTIVE: This study aimed to explore marker genes and their potential molecular mechanisms involved in US-guided MWA for glioma in mice. METHOD: The differentially expressed genes (DEGs1 and DEGs2) and lncRNAs (DELs1 and DELs2) were obtained between Non (glioma tissues without MWA) and T0 groups (0h after MWA), as well as between Non and T24 groups (24h after MWA). The down-regulation cluster genes (CONDOWNDEGs) and upregulation cluster genes (CONUPDEGs) were identified by time series analysis. Candidate genes were obtained by overlapping CONDOWNDEGs with downregulation DEGs (DOWNDEGs)1 and DOWNDEGs2, as well as CONUPDEGs with up-regulation DEGs (UPDEGs)1 and UPDEGs2. The expressions of immune checkpoints and inflammatory factors, gene set enrichment analysis (GSEA), and protein subcellular localization were performed. The eXpression2Kinases (X2K), GeneMANIA, transcription factor (TF), and competing endogenous (ce) RNA regulatory networks were conducted. The expression of marker genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Five marker genes (IL32, VCAM1, IL34, NFKB1 and CXCL13) were identified, which were connected with immune-related functions. Two immune checkpoints (CD96 and TIGIT) and six inflammatory factors played key roles in US-guided MWA for glioma. ceRNA regulatory networks revealed that miR-625-5p, miR-625-3p, miR-31-5p and miR-671-5p were associated with target genes. qRT-PCR indicated both IL32, VCAM1, and NFKB1 were potential markers under US-guided MWA-related time series analysis. CONCLUSION: The use of US-guided MWA might be a practical method for influencing the function of target genes, regulating time frames to decrease inflammation, and stimulating immune responses in glioma therapy.


Asunto(s)
Glioma , Glioma/genética , Glioma/cirugía , Animales , Ratones , Microondas/uso terapéutico , Transcriptoma , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía
10.
Brain Imaging Behav ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298114

RESUMEN

Although structural and functional damage to the brain is considered to be an important neurobiological mechanism of postoperative delirium (POD), alterations in the visual cortical network related to this vulnerability have not yet been determined. In this study, we investigated the impact of alterations in the visual network (VN), as measured by structural and functional magnetic resonance imaging (MRI), on the development of POD. Thirty-six adult patients with frontal glioma who underwent elective craniotomy were recruited. The primary outcome was POD 1-7 days after surgery, as assessed by the Confusion Assessment Method. Cognition before surgery was measured by a battery of neuropsychological tests. Then, we evaluated preoperative and postoperative gray matter volume (GMV) and functional connectivity (FC) alterations by voxel-based morphometry and resting-state functional MRI (rs-fMRI) between the POD and non-POD groups. Multiple logistic regression models were used to investigate the associations between neuroimaging biomarkers and the occurrence of POD. Compared to those in the non-POD group, a decreased GMV in the fusiform gyrus (0.181 [0.018] vs. 0.207 [0.022], FDRp = 0.001) and decreased FC between the fusiform gyrus and VN (0.351 [0.153] vs. 0.610 [0.197], GFRp < 0.001) were observed preoperatively in the POD group, and increased FC between the fusiform gyrus and ventral attentional network (0.538 [0.180] vs. 0.452 [0.184], GFRp = < 0.001) was observed postoperatively in the POD group. According to our multiple logistic regression analysis, age (Odds ratio [OR]: 1.141 [1.015 to 1.282], P = 0.03) and preoperative fusiform-VN FC (OR 0.001 [0.001 to 0.067], P = 0.01) were significantly related to risk of POD. Our findings suggested that preoperative functional disconnectivity between fusiform and VN might be highly involved in the development of POD. These findings may allow for the discovery of additional underlying mechanisms.

11.
J Neuroimaging ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300683

RESUMEN

BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.

12.
Brain ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301592

RESUMEN

Neuronal hyperexcitability is a key driver of persistent pain states including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1), is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain. Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models. LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system (PNS) are poorly understood. We show that LGI1 is highly expressed in DRG and spinal cord dorsal horn neurons in both mouse and human. Using transgenic muse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+), or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we find that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared to littermate controls. In from LGI1fl/Hoxb8+ mice, we find loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice) and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we find that LGI1 expression is dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared to controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hypersensitivity and allodynia. Our findings point to effects of LGI1 at both the level of the DRG and spinal cord, including an important impact of spinal LGI1 on pathological pain. Overall, we find a novel role for LGI1 with relevance to clinical pain.

13.
Mol Pharm ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302161

RESUMEN

Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-ß, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.

14.
J Neurosurg Spine ; : 1-10, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303298

RESUMEN

OBJECTIVE: Patients with spinal cord astrocytomas (SCAs) are at high risk for CNS dissemination, yet comprehensive data on characteristics of dissemination are lacking. This study depicts the exact incidence and patterns of dissemination by analyzing data from a large-scale dataset of SCA. METHODS: The authors included 94 patients with SCA based on the 2021 WHO classification from 2011 to 2022, retrospectively collected their clinical and pathological characteristics, and analyzed factors influencing SCA dissemination. RESULTS: CNS dissemination, encompassing leptomeningeal spreading and/or subarachnoid seeding, was evaluated in 94 patients with and without H3 K27 alterations, with an overall dissemination rate reaching 85.0% at 5-year follow-up. Patients with altered H3 K27 had a significantly higher 5-year CNS dissemination rate than patients with H3 K27 wildtype status (95.2% vs 68.0%, p = 0.002). The median dissemination-free survival in H3 K27-altered patients was 14.37 (95% CI 2.84-25.89) months, significantly shorter than those with H3 K27 wildtype (statistics not calculated; p < 0.001). Based on univariate Cox regression analysis, H3 K27M alteration, higher histopathological grade, Ki-67 index (≥ 10%), and tumor length (≥ 4 segments) were identified as potential factors associated with CNS dissemination in SCAs. Multivariate Cox regression analysis revealed that H3 K27M alteration appeared to be a risk factor for this phenomenon (HR 2.089, 95% CI 0.940-4.642, p = 0.070). Following dissemination, H3 K27-altered patients had a median postdissemination survival of 8.83 (95% CI 7.13-10.54) months, which was significantly shorter than the 13.40 (95% CI 3.98-34.26) months in those with H3 K27 wildtype (p = 0.008). CONCLUSIONS: Factors indicative of higher SCA malignancy, such as H3 K27M alteration, higher histopathological grade, Ki-67 index (≥ 10%), and tumor length (≥ 4 segments), were similarly suggestive of higher rates of dissemination. The occurrence of dissemination is closely associated with the outcome events in patients with SCA.

15.
Int J Mol Med ; 54(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301636

RESUMEN

Gliomas are the most prevailing brain malignancy in both children and adults. Microglia, which are resident in the central nervous system (CNS), are distributed throughout the brain and serve an important role in the immunity of the CNS. Microglial cells exhibit varying phenotypic and metabolic properties during different stages of glioma development, making them a highly dynamic cell population. In particular, glioma­associated microglia/macrophages (GAMs) can alter their metabolic characteristics and influence malignancies in response to the signals they receive. The significance of macrophage metabolic reprogramming in tumor growth is becoming increasingly acknowledged in recent years. However, to the best of our knowledge, there is currently a scarcity of data from investigations into the lipid metabolic profiles of microglia/macrophages in the glioma setting. Therefore, the present review aims to provide a thorough review of the role that lipid metabolism serves in tumor­associated macrophages. In addition, it outlines potential targets for therapy based on lipid metabolism. The present review aims to serve as a reference source for future investigations into GAMs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Metabolismo de los Lípidos , Macrófagos , Microglía , Humanos , Glioma/metabolismo , Glioma/patología , Microglía/metabolismo , Microglía/patología , Macrófagos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Animales , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología
16.
Int J Mol Med ; 54(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301644

RESUMEN

Following the publication of this paper, and subsequently to the publication of a corrigendum (DOI: 10.3892/ijmm.2016.2682) that was intended to address the issue of misassembled data in Figs. 3, 5 and 8, it was drawn to the Editor's attention by a concerned reader that certain of the scratch­wound assay data shown in Fig. 5B were strikingly similar to data appearing in different form in an article written by different authors at different research institutes that had already been published in the journal Cancer Research. In view of the fact that the abovementioned data had already apparently been published prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Journal of Molecular Medicine 38: 172­182, 2016; DOI: 10.3892/ijmm.2016.2614].

17.
Arch Biochem Biophys ; : 110138, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303929

RESUMEN

INTRODUCTION: Local exposure to ionizing radiation (IR) can induce changes in biological processes in distant tissues and organs. Exosomes are nanoscale vesicles that transport biomolecules, mediate communication between cells and tissues, and can affect the abscopal effects of radiotherapy. METHODS: Mice were treated with 8.0 Gy doses of chest and abdomen IR, after which serum samples were taken 24 h after exposure. Their serum exosomes were then isolated via ultracentrifugation and the small RNA portions were extracted for sequencing and bioinformatic analysis. Exosomes were injected intravenously into the mice to assess their ability to cross the blood-brain barrier (BBB). Glioma cells and gliomal stem cells (GSCs) were examined for malignant biological behaviors, stemness, and tumorigenic capacity after co-culturing with different types of exosomes. RESULTS: We found that serum exosomes crossed the BBB in mice after local IR exposure-which induced decreases in the expression of BBB tight-junction proteins and increased brain endothelial cell apoptosis. Exosomes from the exposed groups promoted malignant biological behaviors, stemness, and tumorigenic capacity in glioma cells and GSCs by upregulating the expression of SOS1. Phospho-MEK1/2 and Phospho-ERK1/2, of the MAPK signaling pathway, were found to be up-regulated in cells that were co-cultured with the exposing groups of the exosomes. Further analyses demonstrated that differentially expressed levels of miR-93-5p in mouse serum exosomes regulated the cellular expression of SOS1. CONCLUSION: Following local IR exposure, serum exosomes cross the BBB to promote the progression of distant gliomas. Exosomal microRNAs play an important role in this process.

18.
Neurosurg Rev ; 47(1): 651, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39304542

RESUMEN

Resection of a glioma from the dorsomedial frontal lobe, including the supplementary motor area (SMA), can result in postoperative SMA syndrome. SMA syndrome may occur during awake craniotomies. However, it is often difficult to intraoperatively distinguish between motor dysfunction due to pyramidal tract damage from that due to SMA syndrome. Patients with suspected intraoperative SMA syndrome are indifferent to their surroundings, have stiff facial muscles, and maintain a fixed gaze. We defined this condition as "apathetic look." The present study aimed to investigate whether intraoperative "apathetic look" is useful for identifying intraoperative SMA syndrome in patients with glioma close to motor-related areas, including the SMA, during awake craniotomy. This study included 33 consecutive patients with glioma included in the SMA. We excluded patients whose tumors extended to motor-related areas. We also assessed whether intraoperative SMA syndrome occurred in each patient. We evaluated the correlation between the occurrence of intraoperative SMA syndrome and various clinical factors, including intraoperative "apathetic look." Of the 33 patients, 12 had intraoperative SMA syndrome. Intraoperative "apathetic look" showed strong correlation with intraoperative SMA syndrome (p < 0.0001). Additionally, higher extent of resection (EOR) and resection of the corpus callosum showed a significantly higher incidence of intraoperative "apathetic look." All 12 patients with intraoperative SMA syndrome showed intraoperative "apathetic look" and recovered from SMA syndrome with high EOR. In conclusion, intraoperative "apathetic look" shows strong correlation with intraoperative SMA syndrome. Therefore, "apathetic look" may be a valuable indicator of intraoperative SMA syndrome during awake craniotomy.


Asunto(s)
Neoplasias Encefálicas , Craneotomía , Glioma , Corteza Motora , Vigilia , Humanos , Craneotomía/efectos adversos , Craneotomía/métodos , Masculino , Femenino , Neoplasias Encefálicas/cirugía , Persona de Mediana Edad , Adulto , Glioma/cirugía , Corteza Motora/cirugía , Anciano , Complicaciones Intraoperatorias/diagnóstico , Adulto Joven , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/diagnóstico
19.
Neuroimage Clin ; 44: 103668, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265321

RESUMEN

The VASARI MRI feature set is a quantitative system designed to standardise glioma imaging descriptions. Though effective, deriving VASARI is time-consuming and seldom used clinically. We sought to resolve this problem with software automation and machine learning. Using glioma data from 1172 patients, we developed VASARI-auto, an automated labelling software applied to open-source lesion masks and an openly available tumour segmentation model. Consultant neuroradiologists independently quantified VASARI features in 100 held-out glioblastoma cases. We quantified 1) agreement across neuroradiologists and VASARI-auto, 2) software equity, 3) an economic workforce analysis, and 4) fidelity in predicting survival. Tumour segmentation was compatible with the current state of the art and equally performant regardless of age or sex. A modest inter-rater variability between in-house neuroradiologists was comparable to between neuroradiologists and VASARI-auto, with far higher agreement between VASARI-auto methods. The time for neuroradiologists to derive VASARI was substantially higher than VASARI-auto (mean time per case 317 vs. 3 s). A UK hospital workforce analysis forecast that three years of VASARI featurisation would demand 29,777 consultant neuroradiologist workforce hours and >£1.5 ($1.9) million, reducible to 332 hours of computing time (and £146 of power) with VASARI-auto. The best-performing survival model utilised VASARI-auto features instead of those derived by neuroradiologists. VASARI-auto is a highly efficient and equitable automated labelling system, a favourable economic profile if used as a decision support tool, and non-inferior survival prediction. Future work should iterate upon and integrate such tools to enhance patient care.

20.
World Neurosurg ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307269

RESUMEN

BACKGROUND AND OBJECTIVES: Suprasellar hypothalamic-opticochiasmatic glioma (HOCG) and craniopharyngioma (CP) have similar appearances on conventional MRI and are difficult to distinguish. Moreover, these tumors are situated near vital structures like the optic chiasm and hypothalamus, rendering conventional surgery susceptible to significant complications. We mainly discussed the surgical application value and diagnostic value of diffusion tensor imaging (DTI) in HOCG and CP. METHODS: The retrospective analysis of 13 cases of HOCG and 16 cases of CP was conducted. All patients underwent conventional MRI and DTI prior to surgery, and were pathologically diagnosed postoperatively. RESULTS: Both CP and HOCG appeared as heterogeneous mixed signal masses on conventional MRI. For HOCGs, fiber tractography revealed two different growth patterns of the tumor: infiltrative type and inflated type. The surgical approach and risk levels differ between these growth patterns. Additionally, fiber tractography demonstrates significant differences compared to CPs. The surgical approach and extent of resection for all cases of these two tumors were guided by DTI. CONCLUSION: DTI enhances the accuracy of HOCG and CP differentiation. Furthermore, patterns of tractography described in this study assist neurosurgeons in delineating the surgical pathway and tumor resection range without damaging important fiber bundles, thereby avoiding permanent neurological deficits and improving survival quality for patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA