Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Asunto principal
Intervalo de año de publicación
1.
Heliyon ; 9(1): e12802, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704286

RESUMEN

Regardless of their nature of stochasticity and uncertain nature, wind and solar resources are the most abundant energy resources used in the development of microgrid systems. In microgrid systems and distribution networks, the uncertain nature of both solar and wind resources results in power quality and system stability issues. The randomization behavior of solar and wind energy resources is controlled through the precise development of a power prediction model. Fuzzy-based solar PV and wind prediction models may more efficiently manage this randomness and uncertain character. However, this method has several drawbacks, it has limited performance when the volumes of wind and solar resources historical data are huge in size and it has also many membership functions of the fuzzy input and output variables as well as multiple fuzzy rules available. The hybrid Fuzzy-PSO intelligent prediction approach improves the fuzzy system's limitations and hence increases the prediction model's performance. The Fuzzy-PSO hybrid forecast model is developed using MATLAB programming of the particle swarm optimization (PSO) algorithm with the help of the global optimization toolbox. In this paper, an error correction factor (ECF) is considered a new fuzzy input variable. It depends on the validation and forecasted data values of both wind and solar prediction models to improve the accuracy of the prediction model. The impact of ECF is observed in fuzzy, Fuzzy-PSO, and Fuzzy-GA wind and solar PV power forecasting models. The hybrid Fuzzy-PSO prediction model of wind and solar power generation has a high degree of accuracy compared to the Fuzzy and Fuzzy-GA forecasting models. The rest of this paper is organized as: Section II is about the analysis of solar and wind resources row data. The Fuzzy-PSO prediction model problem formulation is covered in Section III. Section IV, is about the results and discussion of the study. Section V contains the conclusion. The references and abbreviations are presented at the end of the paper.

2.
Ophthalmol Sci ; 2(4): 100195, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531573

RESUMEN

Purpose: Investigate associations of natural environmental exposures with exudative and nonexudative age-related macular degeneration (AMD) across the United States. Design: Database study. Participants: Patients aged ≥ 55 years who were active in the IRIS Registry from 2016 to 2018 were analyzed. Patients were categorized as nonexudative, inactive exudative, and active exudative AMD by International Classification of Diseases 10th Revision and Current Procedural Terminology (CPT) codes. Patients without provider-level ZIP codes matching any ZIP code tabulation area were excluded. Methods: Environmental data were obtained from public sources including the US Geological Survey, National Renewable Energy Laboratory, National Oceanic and Atmospheric Administration, and Environmental Protection Agency. Multiple variable, mixed effects logistic regression models with random intercepts per ZIP code tabulation area quantified the association of each environmental variable with any AMD versus non-AMD patients, any exudative AMD versus nonexudative AMD, and active exudative AMD versus inactive exudative and nonexudative AMD using 3 separate models, while adjusting for age, sex, race, insurance type, smoking history, and phakic status. Main Outcome Measure: Odds ratios for environmental factors. Results: A total of 9 884 527 patients were included. Elevation, latitude, solar irradiance measured in global horizontal irradiance (GHI) and direct normal irradiance (DNI), temperature and precipitation variables, and pollution variables were included in our models. Statistically significant associations with active exudative AMD were GHI (odds ratio [OR], 3.848; 95% confidence interval [CI] with Bonferroni correction, 1.316-11.250), DNI (OR, 0.581; 95% CI, 0.370-0.913), latitude (OR, 1.110; 95% CI, 1.046-1.178), ozone (OR, 1.014; 95% CI, 1.004-1.025), and nitrogen dioxide (OR, 1.005; 95% CI, 1.000-1.010). The only significant environmental associations with any AMD were inches of snow in the winter (OR, 1.005; 95% CI, 1.001-1.009) and ozone (OR, 1.011; 95% CI, 1.003-1.019). Conclusions: The strongest environmental associations differed between AMD subgroups. The solar variables GHI, DNI, and latitude were significantly associated with active exudative AMD. Two pollutant variables, ozone and nitrogen dioxide, also showed positive associations with AMD. Further studies are warranted to investigate the clinical relevance of these associations. Our curated environmental dataset has been made publicly available at https://github.com/uw-biomedical-ml/AMD_environmental_dataset.

3.
Data Brief ; 44: 108485, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35966950

RESUMEN

This data article contains the location, energy consumption, renewable energy potential, techno-economics, and profitability of hybrid renewable energy systems (HRES) in 634 Philippine off-grid islands. The HRES under consideration consists of solar photovoltaics, wind turbines, lithium-ion batteries, and diesel generators. The islands were identified from Google Maps™, Bing Maps™, and the study of Meschede and Ocon et al. (2019) [1]. The peak loads of these islands were acquired from National Power Corporation - Small Power Utilities Group (NPC-SPUG), if available, or estimated from the island population otherwise. Hourly-resolution load profiles were synthesized using the normalized profiles reported by Bertheau and Blechinger (2018) [2]. Existing diesel generators in the islands were compiled from reports by NPC-SPUG, while monthly average global horizontal irradiance and wind speeds were taken from the Phil-LIDAR 2 database. Islands that are electrically interconnected were lumped into one microgrid, so the 634 islands were grouped into 616 microgrids. The HRES were optimized using Island System LCOEmin Algorithm (ISLA), our in-house energy systems modeling tool, which sized the energy components to minimize the net present cost. The component sizes and corresponding techno-economic metrics of the optimized HRES in each microgrid are included in the dataset. In addition, the net present value, internal rate of return, payback period, and subsidy requirements of the microgrid are reported at five different electricity rates. This data is valuable for researchers, policymakers, and stakeholders who are working to provide sustainable energy access to off-grid communities. A comprehensive analysis of the data can be found in our article "Techno-economic and Financial Analyses of Hybrid Renewable Energy System Microgrids in 634 Philippine Off-grid Islands: Policy Implications on Public Subsidies and Private Investments" [3].

4.
Data Brief ; 38: 107371, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589560

RESUMEN

This paper presents hourly Global Horizontal Irradiance (GHI) measured data at three stations (Lahore, Multan, Bahawalpur) in Punjab, Pakistan. The estimated GHI data from three reanalysis datasets have also been presented. Clearness index (KT ), Solar zenith angle (θsza) and Periodicity factor (Pf) were calculated and used to develop bias correction models. The estimated corrected GHI data using best model M20 for years 2015 and 2016 is also presented.

5.
Braz. arch. biol. technol ; 64(spe): e21210131, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1285563

RESUMEN

Abstract The growth in the use of solar energy has encouraged the development of techniques for short-term prediction of solar photovoltaic energy generation (PSPEG). Machine learning with Artificial Neural Networks (ANNs) is the most widely used technique to solve this problem. However, comparative studies of these networks with distinct structural configurations, input parameters and prediction horizon, have not been observed in the literature. In this context, the aim of this study is to evaluate the prediction accuracy of the Global Horizontal Irradiance (GHI), which is often used in the PSPEG, generated by ANN models with different construction structures, sets of input meteorological variables and in three short-term prediction horizons, considering a unique database. The analyses were performed with controlled environment and experimental configuration. The results suggest that ANNs using the input GHI variable provide better accuracy (approximately 10%), and their absence increases error variability. No significant difference (p>0.05) was identified in the prediction error models trained with distinct meteorological input data sets. The prediction errors were similar for the same ANN model in the different prediction horizons, and ANNs with 30 and 60 neurons with one hidden layer demonstrated similar or higher accuracy than those with two hidden layers.


Asunto(s)
Energía Solar , Redes Neurales de la Computación , Radiación Solar , Energía Fotovoltaica
6.
Remote Sens Environ ; 199: 171-186, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28989191

RESUMEN

This work presents a validation of three satellite-based radiation products over an extensive network of 313 pyranometers across Europe, from 2005 to 2015. The products used have been developed by the Satellite Application Facility on Climate Monitoring (CM SAF) and are one geostationary climate dataset (SARAH-JRC), one polar-orbiting climate dataset (CLARA-A2) and one geostationary operational product. Further, the ERA-Interim reanalysis is also included in the comparison. The main objective is to determine the quality level of the daily means of CM SAF datasets, identifying their limitations, as well as analyzing the different factors that can interfere in the adequate validation of the products. The quality of the pyranometer was the most critical source of uncertainty identified. In this respect, the use of records from Second Class pyranometers and silicon-based photodiodes increased the absolute error and the bias, as well as the dispersion of both metrics, preventing an adequate validation of the daily means. The best spatial estimates for the three datasets were obtained in Central Europe with a Mean Absolute Deviation (MAD) within 8-13 W/m2, whereas the MAD always increased at high-latitudes, snow-covered surfaces, high mountain ranges and coastal areas. Overall, the SARAH-JRC's accuracy was demonstrated over a dense network of stations making it the most consistent dataset for climate monitoring applications. The operational dataset was comparable to SARAH-JRC in Central Europe, but lacked of the temporal stability of climate datasets, while CLARA-A2 did not achieve the same level of accuracy despite predictions obtained showed high uniformity with a small negative bias. The ERA-Interim reanalysis shows the by-far largest deviations from the surface reference measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...